精英家教网 > 高中数学 > 题目详情

【题目】对于定义域分别是AB的函数 ,规定:

现给定函数

(1) ,写出函数的解析式;

(2) 时,求问题(1)中函数的值域;

(3) 请设计一个函数,使得函数为偶函数且不是常数函数,并予以证明.

【答案】(1) ;(2;(3 为奇函数,函数为偶函数且不是常数函数证明见解析.

【解析】试题分析:(1)先求出的定义域,然后根据题意给出的解析式(2)根据(1)中的解析式,求复合函数的值域,先求复合部分的值域,然后再求值域(3)设计一个函数,根据题意给出证明过程

解析:(1)因为的定义域为R 的定义域为 所以

2时,

时,

因为,所以,所以,所以

综上所述,当时,

3,此时为奇函数,函数为偶函数且不是常数函数.

证明如下: ,所以为奇函数;

又因为的定义域为R 的定义域为R.

所以

所以时,函数为偶函数且不是常数函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图11所示,三棱台中, 分别为的中点.

(1)求证: 平面

(2)若 ,求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.

(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;

.

(2)设的定义域为,已知的一个等值域变换,且函数的定义域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (其中为自然对数的底数, )

(1) 设函数,讨论函数的零点个数;

(2) 时,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)把曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与曲线C交于M,N两点,点A(1,0),求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 , 抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,其坐标分别是(3,一2 ),(一2,0),(4,一4),( ). (Ⅰ)求C1 , C2的标准方程;
(Ⅱ)是否存在直线L满足条件:①过C2的焦点F;②与C1交与不同的两点M,N且满足 ?若存在,求出直线方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 上的点 关于点 的对称点为 的轨迹为 .

1)求 的轨迹方程

2)设过点 的直线 交于 两点试问是否存在直线 使以 为直径的圆经过原点?若存在,求出直线 的方程若不存在请说明理由.

查看答案和解析>>

同步练习册答案