分析 (1)由||x-1|+2|<3,得3<|x-1|+2<3,即-5<|x-1|<1,然后求解不等式即可.
(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.
解答 解:(1)由||x-1|+2|<3,得-3<|x-1|+2<3,即-5<|x-1|<1,…(2分)
所以解集为{x|或0<x<2} …(5分)
(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
所以{y|y=f(x)}⊆{y|y=g(x)},
又f(x)=|x+a|+|x+3|≥|(x+a)-(x+3)|=|a-3|,
所以|a-3|≥2,解得a≥5或a≤1.…(10分)
点评 本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{64}{3}$ | B. | $\frac{40}{3}$ | C. | $\frac{56}{3}$ | D. | $\frac{38}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{17}$ | B. | $\sqrt{15}$ | C. | $\sqrt{5}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=\frac{π}{6}$ | B. | $x=-\frac{π}{6}$ | C. | $x=\frac{π}{3}$ | D. | $x=-\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com