精英家教网 > 高中数学 > 题目详情
如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.
分析:(1)函数f(x)=x3+
48
x
在(0,+∞)上有下界32.利用导数求极小值能够进行判断.
(2)质点在t∈[0,+∞)上的每一时刻该质点的瞬时速度:v=S′(t)=a-
1
t+1
,依题意得对?t∈[0,+∞)a≥
1
t+1
+
1
2
对?t∈[0,+∞)恒成立.由此能求出实数a的取值范围.
解答:解:(1)函数f(x)=x3+
48
x
在(0,+∞)上有下界32.
理由如下:
f(x)=x3+
48
x

f(x)=3x2-
48
x2

f(x)=3x2-
48
x2
=0,
得x=2,或x=-2(舍)
列表:
 x  (0,2)  2  (2,+∞)
 f′(x) -  0 +
 f(x)  极小值
极小值f(2)=8+
48
2
=32.
∵只有一个极小值,
∴f(x)≥32,
函数f(x)=x3+
48
x
在(0,+∞)上有下界32.
(2)质点在t∈[0,+∞)上的每一时刻该质点的瞬时速度:
v=S′(t)=a-
1
t+1

依题意得对?t∈[0,+∞)有a-
1
t+1
1
2

即:a≥
1
t+1
+
1
2
对?t∈[0,+∞)恒成立.
所以  a≥
3
2
点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.综合性强,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的偶函数的部分图像如右图所示,则在上,下列函数中与的单调性不同的是

A.

B.

C.

D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12)如右图所示,定义在D上的函数,如果满足:对常数A,都有成立,则称函数在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)

(1)试判断函数上是否有下界?并说明理由;

(2)已知某质点的运动方程为,要使在上的每一时刻该质点的瞬时速度是以为下界的函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年新课标版广东省遂溪县高一数学必修一(函数、导数、方程与不等式)单元测试 题型:选择题

定义在R上的偶函数的部分图像如右图所示,则在区间上,下列函数中与的单调性不同的是(    )

A.                 B.

C.           D.

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省扬州中学高三(上)月考数学试卷(解析版) 题型:解答题

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案