精英家教网 > 高中数学 > 题目详情

计算
(1)数学公式
(2)log864+lg数学公式+log2(log216)+ln(e数学公式)-数学公式

解:(1)=42+1-3=14;
(2)=2+(-2)+log24+(lne+ln)-2=2+(1+-2=
分析:(1)把化为2-2,27化为33
(2)把用乘积的对数等于对数的和展开,然后运用对数式的运算性质化简整理.
点评:本题考查了对数的运算性质,考查了有理指数幂的化简求值,考查了学生的运算能力,解答此题的关键是熟记有关运算性质,此题是基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知矩阵A=
.
21
-12
.
,B=
.
1-2
01
.

①计算AB;  
②若矩阵B把直线l:x+y+2=0变为直线l′,求直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选择题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1).选修4-2:矩阵与变换
已知矩阵A=
1a
-1b
,A的一个特征值λ=2,其对应的特征向量是α1=
2
1

(Ⅰ)求矩阵A;
(Ⅱ)若向量β=
7
4
,计算A2β的值.

(2).选修4-4:坐标系与参数方程
已知椭圆C的极坐标方程为ρ2=
12
3cos2θ+4sin2θ
,点F1,F2为其左、右焦点,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).求点F1,F2到直线l的距离之和.
(3).选修4-5:不等式选讲
已知x,y,z均为正数.求证:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,过焦点且垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.
(1)求椭圆的方程;
(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,且
AQ
QB
AE
EB
.求证:λ+μ为定值,并计算出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中
①设有一个回归方程y=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题P:“?x0∈R,x02-x0-1>0“的否定¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(X>1)=p,则P(-l<X<0)=
1
2
-p;
④在一个2×2列联表中,由计算得K2=6.679,则有99%的把握确认这两个变量间有关系.
其中正确的命题的个数有(  )
附:本题可以参考独立性检验临界值表
 P(K2≥k)  0.5 0.40  0.25  0.15  0.10  0.05  0.025  0.010  0.005  0.001 
 k 0.455  0.708  1.323  2.072  2.706  3.841  5.024  6.535  7.879  10.
828 
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆,通径长为1,且焦点与短轴两端点构成等边三角形,(1)求椭圆的方程;(2)过点Q(-1,0)的直线l交椭圆于A,B两点,交直线x=-4于点E,点Q分 所成比为λ,点E分所成比为μ,求证λ+μ为定值,并计算出该定值.

查看答案和解析>>

同步练习册答案