精英家教网 > 高中数学 > 题目详情
已知在直角梯形ABCD中,AD∥BC,∠ABC=,AB=BC=2AD=4,E、F分别是两腰AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值.
(2)当f(x)取得最大值时,求BD与平面BCFE所成角的正弦值.

【答案】分析:(1)先表示出三棱锥的体积记为f(x),利用基本不等式求出f(x)的最大值.
(2)先表示出BD与平面BCFE所成角,然后解直角三角形的边长,求出BD与平面BCFE所成角的正弦值.
解答:解:(1)因为ABCD为直角梯形,沿EF将梯形ABCD翻折后,平面AEFD⊥平面EBCF;所以三棱锥D-BCF的高为AE所以三棱锥D-BCF的体积为:(4分)
所以
所以当x=2时,f(x)取最大值为(7分)
(2)作DH⊥EF于H,连接HB,
因为平面AEFD⊥平面EBCF;
所以DH⊥面BCFE,所以∠DBH就是所求的BD与平面BCFE所成角(10分)
容易计算得,DH=2,,R所以
所以(13分)
所以,BD与平面BCFE所成角的正弦值为(14分)
点评:本题考查棱锥的体积,函数的最值,直线与平面所成的角,考查空间想象能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知在直角梯形ABCD中,AD∥BC,∠ABC=
π2
,AB=BC=2AD=4,E、F分别是两腰AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值.
(2)当f(x)取得最大值时,求BD与平面BCFE所成角的正弦值.精英家教网精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90°,∠EAC=60°,AB=AC=AE.
(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;
(2)求平面EBD与平面ABC所成的锐二面角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,PB与平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求证:平面PCD⊥平面PAC;
(2)设E是棱PD上一点,且PE=
1
3
PD,求异面直线AE与PB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在直角梯形ABCD中,AD∥BC,∠ABC=数学公式,AB=BC=2AD=4,E、F分别是两腰AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值.
(2)当f(x)取得最大值时,求BD与平面BCFE所成角的正弦值.

查看答案和解析>>

同步练习册答案