精英家教网 > 高中数学 > 题目详情
5.x取何值时,4x,5×2x-2,1成等差数列?

分析 根据等差数列的定义建立方程关系即可.

解答 解:若4x,5×2x-2,1成等差数列,
则4x+1=2×5×2x-2
即(2x2-$\frac{5}{2}$×2x+1=0,
即2(2x2-5×2x+2=0,
即(2x-2)(2•2x-1)=0
即2x=2或2•2x-1=0,
即x=1或x=-1.

点评 本题主要考查等差数列性质的应用,根据等差中项,结合一元二次方程进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线C顶点为O(0,0),焦点为F(1,0),A为C上异于顶点的任意一点,过点A的直线l交C 于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|,延长AF交曲线C于点E.过点E作直线l1平行于l,设l1与此抛物线准线交于点Q.
(Ⅰ)求抛物线的C的方程;
(Ⅱ)设点A、B、E的纵坐标分别为yA、yB、yE,求$\frac{{{y_A}-{y_B}}}{{{y_A}-{y_E}}}$的值;
(Ⅲ)求△AEQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数h(x)=ax-lnx(x∈R)(注:下列各个小问中e都为自然对数的底数).
(Ⅰ)当x=$\frac{1}{2}$是h(x)的极值点时,求曲线h(x)在点(1,h(1))处的切线方程;
(Ⅱ)若a=2时,存在实数k,使不等式kx+1≤h(x)在x∈[$\frac{1}{e}$,e]成立,求k的取值范围.
(Ⅲ)当x∈(0,$\frac{1}{e}$]时,求h(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把一个体积为64cm3、表面涂有红漆的正方体木块锯成64个体积为1cm3的小正方体,从中任取一块,则这一块有且只有一面涂有红漆的概率为$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿 BD折起到△EBD的位置,使平面EBD⊥平面ABD
(Ⅰ)求证:AB⊥DE
(Ⅱ)若点F为 BE的中点,求三棱锥E-AFD的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个四棱柱的三视图如图所示,则其体积为8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)为定义在$[{-\frac{π}{2},\frac{π}{2}}]$上的函数,若对于任意的x∈[-1,1],都有f(arcsinx)+3f(-arcsinx)=arccosx成立,则函数f(x)的值域为[-$\frac{π}{8}$,$\frac{3π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x3-2x2+x+a,g(x)=-2x+$\frac{9}{x}$,若对任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是[-$\frac{7}{4}$,-$\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知不等式|x+1|+|x-2|≥m的解集是R
(1)求实数m的取值集合M;
(2)若a,b∈M,试比较ab+9与3a+3b的大小.

查看答案和解析>>

同步练习册答案