精英家教网 > 高中数学 > 题目详情
9、如果对于任意实数x,[x]表示不超过x的最大整数.例如[3.27]=3,[0.6]=0.那么“[x]=[y]”是“|x-y|<1”的(  )
分析:先根据[x]的定义可知,[x]=[y]?|x-y|<1,而取x=1.9,y=2.1,此时满足|x-y|=0.2<1,但[x]≠[y],根据若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件进行判定即可.
解答:解:[x]=[y]?-1<x-y<1即|x-y|<1
而取x=1.9,y=2.1,此时|x-y|=0.2<1,而[x]=1,[y]=2,[x]≠[y]
∴“[x]=[y]”是“|x-y|<1”的充分而不必要条件
故选A
点评:判断充要条件的方法是:
①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;
②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;
③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;
④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、如果对于任意实数x,[x]表示不超过x的最大整数.例如[3.27]=3,[0.6]=0.那么“[x]=[y]”是“|x-y|<2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

9、如果对于任意实数x,[x]表示不超过x的最大整数,那么“[x]=[y]”是“|x-y|<1”成立的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)已知函数f(x)=lnx,g(x)=
1
2
x2

(Ⅰ)设函数F(x)=f(x)-ag(x),若x∈(0,2),函数F(x)不存在极值,求实数a的取值范围;
(Ⅱ)设函数G(x)=
(x-1)[f2(x)+g(x)]
g(x)
,如果对于任意实数x∈(1,t],都有不等式tG(x)-xG(t)≤G(x)-G(t)成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌县一模)选修4一5:不等式选讲
设函数f(x)=|x-1|+|x-a|.
(I)若a=-1,解不等式,f(x)≥3;
(II)如果对于任意实数x,恒有f(x)≥2成立,求a的取值范围.

查看答案和解析>>

同步练习册答案