分析 (1)根据对数函数的定义可知,a•2x-a+4>0在区间(-1,+∞)恒成立,分离参数,求出a的取值范围即可,
(2)关键是分类讨论,根据题目的要求仔细分类,解不等式即可.
解答 解:(1)f(x)=lg(a•2x-a+4)在区间(-1,+∞)上有意义,
则a•2x-a+4>0在区间(-1,+∞)恒成立,
∴a(2x-1)>-4,
当-1<x<0时,a<$\frac{4}{1{-2}^{x}}$,
∵$\frac{4}{1{-2}^{x}}$>8,∴a≤8,而a>0,
∴0<a≤8;
当x>0时,a>$\frac{4}{1{-2}^{x}}$,
∵$\frac{4}{1{-2}^{x}}$<0,
∴a≥0,又a>0,
∴a>0;
当x=0时,a∈R,
综上所述a的取值范围为(0,8];
(2)当a>0时,x2-(-2+a+a2)x+a3-2a<0,
即[x-(a2-2)](x-a)<0,
当a2-2>a时,即a>2时,解得a<x<a2-2,
当a2-2<a时,即0<a<2时,解得a2-2<x<a,
当a2-2=a时,即a=2时,无解,
综上所述:当a>2时,解集为(a,a2-2),
当a=2时,解集为∅,
当0<a<2时,解集为(a2-2,a).
点评 本题考查了对数函数的性质,考查不等式的解法,正确分类是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [-2,6] | B. | [-2,1)∪(1,6] | C. | [-$\frac{1}{2}$,$\frac{3}{2}$] | D. | [-$\frac{1}{2}$,1)∪(1,$\frac{3}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-3) | B. | (-1,3) | C. | (1,3) | D. | (1,-3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 减函数且f(x)<0 | B. | 减函数且f(x)>0 | C. | 增函数且f(x)0 | D. | 增函数且f(x)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ab | B. | 3a+$\frac{b}{2}$+1 | C. | 3a+$\frac{b}{2}$ | D. | a3+$\sqrt{b}$+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<θ<$\frac{3π}{4}$ | B. | 0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<π | C. | $\frac{3π}{4}$<θ<π | D. | $\frac{3π}{4}$<θ<$\frac{5π}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com