精英家教网 > 高中数学 > 题目详情
18.设0≤θ≤2π,如果sinθ>0且cos2θ>0,则θ的取值范围是(  )
A.0<θ<$\frac{3π}{4}$B.0<θ<$\frac{π}{4}$或$\frac{3π}{4}$<θ<πC.$\frac{3π}{4}$<θ<πD.$\frac{3π}{4}$<θ<$\frac{5π}{4}$

分析 由sinθ>0,可得0<θ<π,再由cos2θ>0可得1-2sin2θ>0,进而可得0<sinθ<$\frac{\sqrt{2}}{2}$,解得θ的范围.

解答 解:∵0≤θ≤2π,sinθ>0,
∴0<θ<π,
又∵cos2θ>0,∴1-2sin2θ>0,
∴0<sinθ<$\frac{\sqrt{2}}{2}$,
∴0<θ<$\frac{π}{4}$,$\frac{3π}{4}$<θ<π,
故选:B.

点评 本题考查三角函数符号问题,由二倍角公式变形整理得单角的三角函数范围是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知a>0,函数f(x)=lg(a•2x一a+4)在区间(-1,+∞)上有意义.
(1)求a的取值范围;
(2)解关于x的不等式;x2-(a2+a-2)x+a(a2-2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)在区间(-∞,+∞)内是增函数,a、b∈R,证明:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于函数f(x)和g(x)定义运算“*”如下:设D为f(x)和g(x)的公共定义域,对下任意x∈D,当f(x)≤g(x)时,f(x)*g(x)=f(x),当f(x)>g(x)时,f(x)*g(x)=g(x),己知f(x)=$\sqrt{x+3}$,g(x)=3-x,则f(x)*g(x)的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求f(x)的解析式;
(2)将f(x)的图象上每个点纵坐标不变,横坐标伸长为原来的2倍,再将所得图象向右平移$\frac{π}{6}$个单位得到y=g(x)的图象,求函数y=g(x)在区间[-$\frac{5π}{9}$,$\frac{2π}{9}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知y=x+$\frac{1}{x}$,则y′|x=1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=tan(2x+$\frac{π}{4}$)的周期是$\frac{π}{2}$,函数y=tan(-2x+$\frac{π}{4}$)的周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+3,x∈R.
(1)若f(2-x)=f(2+x),求实数a的值?
(2)当x∈[-2,4]时,求函数f(x)的最大值?
(3)当x∈[-2,2]时,f(x)≥a恒成立,求实数a的最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的面积为abπ,则${∫}_{0}^{\frac{\sqrt{2}}{2}}$$\sqrt{1{-2x}^{2}}$dx=(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{\sqrt{2}π}{4}$D.$\frac{\sqrt{2}π}{8}$

查看答案和解析>>

同步练习册答案