试题分析:
(1)将条件
带入函数解析式消b,得到
,对该三次函数求导得到导函数,由于
,故该导函数为二次函数,根据题意需要求的该二次函数大于0的解集,因为二次函数含参数,故依次讨论开口,
的符号和根的大小,即可到导函数大于0的解集即为原函数的单调增区间.
(2)分析题意,可得该三次函数过原点,根据函数
与x轴相切,所以有个极值为0且有一个重根,故可得函数
有一个极大值0和一个极小值
,有一个重根,则对
因式分解会得到完全平方式,即
提取x的公因式后,剩下二次式的判别
,得到a,b之间的关系式,再根据极小值为
,则求导求出极小值点,得到关于a,b的另外一个等式,即可求出a,b的值.
试题解析:
(1)
,
.
令
,
,
当
时,由
得
.
①当
时,
的单调递增区间为
; 3分
②当
时,
的单调递增区间为
; 5分
③当
时,
的单调递增区间为
. 7分
(2)
,
依据题意得:
,且
① 9分
,得
或
. 11分
因为
,所以极小值为
,
∴
且
,得
, 13分
代入①式得
,
. 15分