精英家教网 > 高中数学 > 题目详情
设f(x)=1g(
2
1-x
+a)是奇函数,且在x=0处有意义,则该函数是(  )
A、(-∞,+∞)上的减函数
B、(-∞,+∞)上的增函数
C、(-1,1)上的减函数
D、(-1,1)上的增函数
分析:由f(0)=0,求得a的值,可得f(x)=lg(
1+x
1-x
),由此求得函数f(x)的定义域.再根据f(x)=
lg(-1-
2
x-1
),以及t=-1-
2
x-1
在(-1,1)上是增函数,可得结论.
解答:解:由于f(x)=1g(
2
1-x
+a)是奇函数,且在x=0处有意义,
故有f(0)=0,即 lg(2+a)=0,解得 a=-1.
故f(x)=1g(
2
1-x
-1)=lg(
1+x
1-x
).
1+x
1-x
>0,求得-1<x<1,故函数f(x)的定义域为(-1,1).
再根据f(x)=lg(
1+x
1-x
)=lg(-1-
2
x-1
),函数t=-1-
2
x-1
在(-1,1)上是增函数,
可得函数f(x)在(-1,1)上是增函数,
故选 D.
点评:本题主要考查函数的奇偶性,复合函数的单调性,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=alnx,g(x)=
1
2
x2

(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+x2+b,g(x)=alnx.
(1)若f(x)在x∈[-
1
2
,1)
上的最大值为
3
8
,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=
f(x),x<1
g(x),x≥1
,对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=
f(x),x<1
g(x),x≥1
若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安庆二模)已知函数f(x)=-x3+x2,g(x)=alnx(a≠0,a∈R).
(I)求f(x)的单调区间;
(II)若对任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(III)设F(x)=
f(x),x<1
g(x),x≥1
,曲线y=F(x)上是否总存在两点P,Q,使得△POQ是以O(O为坐标原点)为钝角柄点的钝角三角形,且最长边的中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3+x2,g(x)=alnx,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=
f(x),x<1
g(x),x≥1
若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

同步练习册答案