精英家教网 > 高中数学 > 题目详情

设集合A={x|0≤x<1},B={x|≤x≤2},函数数学公式,x0∈A且f[f(x0)]∈A,则x0的取值范围是________.


分析:利用当x0∈A,且f[f(x0)]∈A,列出不等式,解出 x0的取值范围
解答:解;:∵0≤x0<1,
∴f(x0)=2x0∈[1,2 )=B
∴f[f(x0)]=f(2x0)=4-2•2x0
∵f[f(x0)]∈A,
∴0≤4-2•2x0<1
∴log2x0<x≤1
∵0≤x0<1
∴log2<x0<1
故答案为:(
点评:本题考查求函数值的方法,以及不等式的解法,解题的关键是确定f(x0)的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤4},B={y|0≤y≤2},则下列对应f中不能构成A到B的映射的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0<x<2},B={x|x2≤1}.则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0<x-m<2},B={x|x≤0或x≥3}.分别求出满足下列条件的实数m的取值范围.
(Ⅰ)A∩B=∅;
(Ⅱ)A∪B=B.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤3},B={x|x2-3x+2≤0,x∈Z},则A∩B等于(  )
A、(-1,3)B、[1,2]C、{0,1,2}D、{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|0≤x≤4},B={y|0≤y≤2}则下列对应f中不能构成A到B的映射的是(  )

查看答案和解析>>

同步练习册答案