已知椭圆C:+=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点.
①若线段AB中点的横坐标为-,求斜率k的值;
②已知点M(-,0),求证:·为定值.
科目:高中数学 来源: 题型:解答题
设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线-y2=1的左、右顶点分别为A1,A2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.求直线A1P与A2Q交点的轨迹E的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点在坐标原点,焦点在x轴正半轴的抛物线上有一点A(,m),A点到抛物线焦点的距离为1.
(1)求该抛物线的方程;
(2)设M(x0,y0)为抛物线上的一个定点,过M作抛物线的两条互相垂直的弦MP,MQ,求证:PQ恒过定点(x0+2,-y0).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知线段,的中点为,动点满足(为正常数).
(1)建立适当的直角坐标系,求动点所在的曲线方程;
(2)若,动点满足,且,试求面积的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知曲线上的点到点的距离比它到直线的距离小2.
(1)求曲线的方程;
(2)曲线在点处的切线与轴交于点.直线分别与直线及轴交于点,以为直径作圆,过点作圆的切线,切点为,试探究:当点在曲线上运动(点与原点不重合)时,线段的长度是否发生变化?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).
(1)求点P的坐标;
(2)焦点在x轴上的椭圆C过点P,且与直线交于A,B两点,若的面积为2,求C的标准方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点,两个焦点为,.
(1)求椭圆的方程;
(2),是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com