精英家教网 > 高中数学 > 题目详情
已知正方体中,过顶点任作一条直线,与异面直线
所成的角都为,则这样的直线可作(   )条              (   )
A.B.C.D.
C
因为AD1∥BC1,所以直线AC和BC1所成的角即为直线AC和AD1所成的角,所以过A1在空间作直线l,使l与直线AC和BC1所成的角都等于,即过点A在空间作直线l,使l与直线AC和AD1所成的角都等于
因为∠ACD1=60°,∠ACD1的外角平分线与AC和AD1所成的角相等,均为60°,所以在平面ACD1内有一条满足要求.
因为∠ACD1的角平分线与AC和AD1所成的角相等,均为30°,将角平分线绕点A向上转动到与面ACD1垂直的过程中,存在两条直线与直线AC和BC1所成的角都等于,故符合条件的直线有3条.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)三棱锥被平行于底面的平面所截得的几何体如图所示,截面为平面中点.
(Ⅰ)证明:平面平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CDAB=4,BC=CD=2,AA="2, " EE分别是棱ADAA的中点。

(1)设F是棱AB的中点,证明:直线EE//平面FCC
(2)证明:平面D1AC⊥平面BB1C1C

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,平面不能用(  ) 表示.
A.平面α
B.平面AB
C.平面AC
D.平面ABCD
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱中,各棱长均为2,平面⊥平           面

(1)求证:⊥平面
(2)求二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,四棱锥中,平面,底面为矩形,的中点.
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积;
(Ⅲ)边上是否存在一点,使得平面,若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线与平面,下列命题正确的是                         (   )
A.,则 
B.,则
C.,则
D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如题8图,在正三棱柱中,已知 在棱上,且 则与平面所成角的正弦值为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

异面直线是指
A.不相交的两条直线B.分别位于两个平面内的直线
C.一个平面内的直线和不在这个平面内的直线D.不同在任何一个平面内的两条直线

查看答案和解析>>

同步练习册答案