精英家教网 > 高中数学 > 题目详情
若射线OM、ON上分别存在点M1、M2与N1、N2,则三角形面积之比为·.

    若不在同一平面内的射线OP、OQ和OR上,分别存在点P1、P2,点Q1、Q2,点R1、R2,则类似的结论是什么?

分析:本题已知三角形的面积之比需弄清楚点分得到的结论,然后才能类比得结论扩展到空间的问题.

解:∵=

其面积比中有一个共同的角,类似地,连结P1Q1、Q1R1、P1R1、P2Q2、Q2R2、P2R2,得到的是锥体,需研究锥体的体积并找出不变量,两条相交线确定一个面,另一条线不在这个面内就有线面角,而线面角不随点的位置变化而变化,设OP与面QRO所成的角为θ.OP在面ORQ内的射影为OP′,P1、P2的射影分别为P1′、P2′,则=sinθ,且.

·.

∴类似地有·.

绿色通道

    要准确地得到相似的结论,需先弄清楚前面的结论是怎么得到的,才能类似地推出.一般地平面内的面积问题推广到空间内为体积问题,平面内的线段问题,推广到空间为面积问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则
S△OM1N1
S△OM2N2
=
OM1
OM2
ON1
ON2
;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设平面内有n条直线(n≥3)其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f(n)表示这n条直线交点的个数,则f(4)=
5
5
,当n>4时,f(n)=
(n-2)(n+1)
2
(n-2)(n+1)
2
(用n表示).
(2)如图:若射线OM,ON上分别存在点M1,M2与点N1,N2,则三角形面积之比
S△OM1N1
S△OM2 N2
=
OM1
OM2
=
ON1
ON2
,若不在同一平面内的射线OP,OQ和OR上分别存在点P1P2,点Q1Q2和点R1R2,则
VO-P1Q1R1
VO-P2Q2R2 
=
OP1•OQ1•OR1
OP2•OQ2•OR2
OP1•OQ1•OR1
OP2•OQ2•OR2

查看答案和解析>>

科目:高中数学 来源:2013届安徽省高二下学期期中质量检测理科数学试卷(解析版) 题型:填空题

如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是                

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高二12月月考数学试卷 题型:填空题

如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是                

 

查看答案和解析>>

科目:高中数学 来源:2010年普通高等学校招生全国统一考试(湖北卷)数学(理科) 题型:填空题

如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是                

 

查看答案和解析>>

同步练习册答案