精英家教网 > 高中数学 > 题目详情
证明恒等式:sin4α+cos4α=
3
4
+
1
4
cos4α.
考点:三角函数恒等式的证明
专题:证明题
分析:利用三角恒等变换及二倍角公式即可证得结论.
解答: 证明:sin4α+cos4α=(sin2α+cos2α)2-2sin2αcos2α
=1-
1
2
sin22α=1-
1
2
×
1-cos4α
2

=
3
4
+
1
4
cos4α.
点评:本题考查三角恒等变换及二倍角公式的应用,考查推理证明能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax+1-lnx.
(1)若a=0,求在f(x)图象与x轴交点处的切线方程;
(2)若f(x)在(1,2)上为单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一艘渔艇停泊在距岸9km处,今需派人送信给距渔艇3
34
km处的海岸渔站中,如果送信人步行每小时5km,船速每小时4km,问应在何处登岸可以使抵达渔站的时间最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=a•ex,g(x)=lnx-lna,其中a为常数,且函数y=f(x)和y=g(x)的图象在其与坐标轴的交点处的切线互相平行,求此时平行线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
alnx
x+1
+
b
x
,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-x-2≤0,命题q:-1≤x≤a(a>-1).
(Ⅰ)若p是q的充分必要条件,求a的值;
(Ⅱ)若p是q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若n为大于1的自然数,求证
1
n+1
+
1
n+2
+…+
1
2n
7
13

查看答案和解析>>

科目:高中数学 来源: 题型:

某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2012年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:
日期12月1日12月2日12月3日12月4日12月5日
温差x(℃)101113128
发芽数y(颗)2325302616
建立适当坐标系画出表中数据的散点图,请根据12月2日3日4日的数据,求出y关于x的线性回归方程
y
=bx+a;
(注:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的值域:
(1)y=x-
2x-1
       
(2)y=x+2
x-1

(3)y=x4+4x2+1                              
(4)y=6-
5-4x-x2

查看答案和解析>>

同步练习册答案