精英家教网 > 高中数学 > 题目详情
一艘渔艇停泊在距岸9km处,今需派人送信给距渔艇3
34
km处的海岸渔站中,如果送信人步行每小时5km,船速每小时4km,问应在何处登岸可以使抵达渔站的时间最省?
考点:导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:先求出时间的表达式,再利用导数的方法求出最值即可.
解答: 解:如图,设渔艇停泊在A处,
海岸线BC(C为渔站),AB⊥BC于B.
∴AB=9,AC=3
34

设此人在D处登岸,CD=x,
BC=
AC2-AB2
=15

∴BD=15-x,∴AD=
92+(15-x)2

∴送信所需时间t=
81+(15-x)2
4
+
x
5

t′=
-(15-x)
4
81+(15-x)2
+
1
5
=
4
81+(15-x)2
+5x-75
20
81+(15-x)2

令t'=0时,解得(5x-75)2=16[81+(15-x)2].
∴|15-x|=12,∴x=3,x=27(舍去).
答:此人在距渔站3km处登岸可使抵达渔站的时间最短.
点评:本题考查函数模型的构建,考查导数知识的运用,考查利用数学知识解决实际问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
3
5
,则cos(
π
2
+2α)等于(  )
A、
16
25
B、-
12
5
C、
12
25
D、-
14
25

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,-1),
b
=(2,1)求:
(1)|
a
+
b
|
(2)求
a
b
的夹角
(3)求x的值使x
a
+3
b
与3
a
-2
b
为平行向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(2m2+3m-2)+(m2+m-2)i,m∈R,根据下列条件,求m值.
(1)z是实数;
(2)z是纯虚数;
(3)z对应的点Z在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)sin(180°+α)+cos(270°+α);
(2)
sin(π+α)tan(π-α)
sin(2π+α)tan(2π+α)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(|x-a|-|x-a2|+2)(a∈R)的定义域为R,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评分.
现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的所有可能值组成的集合S;
(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求S中每个元素出现的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明恒等式:sin4α+cos4α=
3
4
+
1
4
cos4α.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合,且两个坐标系的坐标长度相同,已知直线l的参数方程为
x=-1+tcosα
y=1+tsinα
(t为参数),曲线C的极坐标方程为ρ=4cosθ.
(1)若直线l的斜率为-1,求直线l与曲线C交点的极坐标;
(2)若直线l与曲线C相交弦长为2
3
,求直线l的参数方程.

查看答案和解析>>

同步练习册答案