精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|log2x>0},B={x|x<2},则(  )
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

分析 分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.

解答 解:∵集合A={x|log2x>0}={x|x>1},B={x|x<2},
∴A∩B={x|1<x<2},
A∪B=R.
故选:B.

点评 本题考查并集、交集的求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.执行如图所示的程序框图,若输入的a的值为3,则输出的i=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,已知过点M(1,1)的直线l与圆(x+1)2+(y-2)2=5相切,且与直线ax+y-1=0垂直,则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=1,且3an+1=1-an
(Ⅰ)证明:数列{an$-\frac{1}{4}$}是等比数列
(Ⅱ)记bn=(-1)n+1n(an-$\frac{1}{4}$),求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点P(1,$\sqrt{2},\sqrt{3}$)为空间直角坐标系中的点,过点P作平面xOy的垂线PQ,垂足为Q,则点Q的坐标为(  )
A.(0,$\sqrt{2}$,0)B.(0,$\sqrt{2},\sqrt{3}$)C.(1,0,$\sqrt{3}$)D.(1,$\sqrt{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设f(x)是定义在R上周期为2的函数,且对任意的实数x,恒有f(x)-f(-x)=0,当x∈[0,1]时,f(x)=-$\sqrt{1-{x^2}}$,则函数g(x)=f(x)-ex+1在区间[-2017,2017]上零点的个数为(  )
A.2016B.2017C.4032D.4034

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,且与直线x+y-1=0相交于A,B两点.
(1)若椭圆C1的两焦点分别为双曲线${C_2}:{x^2}-\frac{y^2}{2}=1$的顶点,且以椭圆上任一点P和左右焦点F1,F2为顶点的△PF1F2的周长为$2\sqrt{3}+2$,求椭圆C1的标准方程;
(2)在(1)的条件下,求弦AB的长;
(3)当椭圆的离心率e满足$\frac{{\sqrt{3}}}{3}≤e≤\frac{{\sqrt{2}}}{2}$,且以AB为直径的圆经过坐标原点O,求椭圆长轴长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为(  )
A.48里B.24里C.12里D.6里

查看答案和解析>>

同步练习册答案