精英家教网 > 高中数学 > 题目详情
2.以下哪个不等式的解集为(-2,4)?(  )
A.|x-1|<3B.|x-3|<1C.|x-3|≤1D.|x-1|≤3

分析 求出每个不等式的解集,从而得出结论.

解答 解:|x-1|<3,即-3<x-1<3,即-2<x<4,故A满足条件;
|x-3|<1,即-1<x-3<1,即2<x<4,故B不满足条件;
|x-3|≤1,即-1≤x-3≤1,即2≤x≤4,故C不满足条件;
|x-1|≤3,即-3≤x-1≤3,即-2≤x≤4,故D满足条件,
故选:A.

点评 本题主要考查分式不等式的解法,体现了等价转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=sinωx+$\sqrt{3}$cosωx(x∈R,ω>0),又f(α)=-2,f(β)=0,且|α-β|的最小值为$\frac{3π}{4}$,则函数g(x)=f(x)-1在[-2π,0]上零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a2<b2,a-b>0,则(  )
A.b<0B.b>0C.a<0D.a>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2f2(1-x),求函数的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知1≤4a-2b≤2,且3≤a+b≤4,求4a+2b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=Asin(ωx+φ)x∈R,ω>0,|φ|<π),其导函数y=f′(x)的部分图象如图所示,
(1)求f(x)的解析式;
(2)求函数g(x)=ex•f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x>1,则1+4x+$\frac{1}{x-1}$的最小值是9,此时x=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.0.30.2,30.3,(-0.3)${\;}^{\frac{3}{5}}$,0.20.3,20.5,(-0.3)7从小到大排列为(-0.3)${\;}^{\frac{3}{5}}$<(-0.3)7<0.20.3<0.30.2<30.3<20.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某粮食收购站分两个等级收购小麦,一级小麦a元/kg,二级小麦b元/kg(b<a).现有一级小麦m kg,二级小麦n kg,若以两种价格的平均数收购,是否合理?为什么?

查看答案和解析>>

同步练习册答案