精英家教网 > 高中数学 > 题目详情

设对任意实数k,关于x的不等式( k 2 + 1 ) xk 4 + 2的公共解集记为M,则(   )

(A)∈M与∈M都成立          (B)∈M与∈M都不成立

(C)∈M成立,∈M不成立      (D)∈M不成立,∈M成立
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设关于x的函数f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m为实数集R上的常数,函数f(x)在x=1处取得极值0.
(Ⅰ)已知函数f(x)的图象与直线y=k有两个不同的公共点,求实数k的取值范围;
(Ⅱ)设函数g(x)=(p-2)x+
p+2x
,其中p≤0,若对任意的x∈[1,2],总有2f(x)≥g(x)+4x-2x2成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设函数f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)为已知实常数,x∈R.
下列关于函数f(x)的性质判断正确的命题的序号是
①②③④
①②③④

①若f(0)=f(
π
2
)=0
,则f(x)=0对任意实数x恒成立;
②若f(0)=0,则函数f(x)为奇函数;
③若f(
π
2
)=0
,则函数f(x)为偶函数;
④当f2(0)+f2(
π
2
)≠0
时,若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z).

查看答案和解析>>

科目:高中数学 来源:2010-2011学年上海市六校高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

(理)设函数f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+an•sin(x+αn),其中ai、αi(i=1,2,…,n,n∈N*,n≥2)为已知实常数,x∈R.
下列关于函数f(x)的性质判断正确的命题的序号是   
①若,则f(x)=0对任意实数x恒成立;
②若f(0)=0,则函数f(x)为奇函数;
③若,则函数f(x)为偶函数;
④当时,若f(x1)=f(x2)=0,则x1-x2=kπ(k∈Z).

查看答案和解析>>

同步练习册答案