精英家教网 > 高中数学 > 题目详情
f(x)的定义域为R,且f(x)=
2-x-1     (x≤0)
f(x-1)   (x>0)
,若方程f(x)=x+a有两不同实根,则a的取值范围为(  )
A、(-∞,1)
B、(-∞,1]
C、(0,1)
D、(-∞,+∞)
分析:由已知中函数的解析式,我们易分析出函数的图象在Y轴右侧呈周期性变化,结合函数在x≤0时的解析式,我们可以画出函数的像,根据图象易分析出满足条件的a的取值范围.
解答:精英家教网解:x≤0时,f(x)=2-x-1,
0<x≤1时,-1<x-1≤0,
f(x)=f(x-1)=2-(x-1)-1.
故x>0时,f(x)是周期函数,如图,
欲使方程f(x)=x+a有两解,
即函数f(x)的图象与直线y=x+a有两个不同交点,
故a<1,则a的取值范围是(-∞,1).
故选A
点评:本题考查的知识点是函数的图象与图象变化,其中根据函数的解析式,分析函数的性质,并画出函数的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,有
f(x+y)=f(x)f(y)
(Ⅰ)求f(0),判断并证明函数f(x)的单调性;
(Ⅱ)数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)

①求{an}通项公式.
②当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(loga+1x-logax+1)
对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,对任意的实数x,y都有f(x+y)=f(x)+f(y);当x<0时,f(x)<0,且f(1)=1.
(1)判断并证明f(x)在(-∞,+∞)上的单调性;
(2)若数列{an}满足:0<a1<1,且2-an+1=f(2-an),证明:对任意的n∈N*,0<an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,对于任意实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)<0且f(2)=-1.试问函数f(x)在区间[-6,6]上是否存在最大值与最小值?若存在,求出最大值、最小值;如果没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)的定义域为R,且对任意的实数x,恒有2f(x)+f(-x)+2x=0成立,
(1)试求f(x)的解析式; 
(2)试讨论f(x)在R上的单调性,并用定义予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•南京模拟)已知函数y=f (x)的定义域为R,f (27)=3,且对任意的实数x1,x2,必有f (x1•x2)=f (x1)•f (x2)  成立,写出满足条件的一个函数为
y=
3x
y=
3x

查看答案和解析>>

同步练习册答案