精英家教网 > 高中数学 > 题目详情

对于各项均为整数的数列,如果(=1,2,3,…)为完全平方数(即能表示为一个整数的平方的数,例如4是完全平方数、3不是完全平方数),则称数列具有“性质”.不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“性质”,则称数列具有“变换性质”.下面三个数列:①数列的前项和;②数列1,2,3,4,5;③1,2,3,…,11.具有“性质”的为     ;具有“变换性质”的为     .

具有“性质”的为         ;具有“变换性质”的为         .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于各项均为整数的数列{an},如果满足ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”;
不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
(Ⅰ)设数列{an}的前n项和Sn=
n3
(n2-1)
,证明数列{an}具有“P性质”;
(Ⅱ)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换P性质”,具有此性质的数列请写出相应的数列{bn},不具此性质的说明理由;
(Ⅲ)对于有限项数列A:1,2,3,…,n,某人已经验证当n∈[12,m2](m≥5)时,数列A具有“变换P性质”,试证明:当n∈[m2+1,(m+1)2]时,数列A也具有“变换P性质”.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于各项均为整数的数列{an},如果ai+i(i=1,2,3,…)为完全平方数,则称数列{an}具有“P性质”.不论数列{an}是否具有“P性质”,如果存在与{an}不是同一数列的{bn},且{bn}同时满足下面两个条件:
①b1,b2,b3,…,bn是a1,a2,a3,…,an的一个排列;
②数列{bn}具有“P性质”,则称数列{an}具有“变换P性质”.
下面三个数列:
①数列{an}的前n项和Sn=
n3
(n2-1)

②数列1,2,3,4,5;
③1,2,3,…,11.
具有“P性质”的为
;具有“变换P性质”的为

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市浦东新区高三第三次模拟理科数学试卷(解析版) 题型:填空题

定义:对于各项均为整数的数列,如果(=1,2,3, )为完全平方数,则称数列具有“性质”;不论数列是否具有“性质”,如果存在数列不是同一数列,且满足下面两个条件:

(1)的一个排列;

(2)数列具有“性质”,则称数列具有“变换性质”.

给出下面三个数列:

①数列的前项和

②数列:1,2,3,4,5;

③数列:1,2,3,4,5,6,7,8,9,10,11.

具有“性质”的为        ;具有“变换性质”的为           .

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省高三10月月考理科数学试卷(解析版) 题型:填空题

对于各项均为整数的数列,如果=1,2,3,…)为完全平方数,则称数

具有“性质”.不论数列是否具有“性质”,如果存在与不是同一数列的,且同时满足下面两个条件:①的一个排列;②数列具有“性质”,则称数列具有“变换性质”.下面三个数列:①数列的前项和;②数列1,2,3,4,5;③1,2,3,…,11.具有“性质”的为         ;具有“变换性质”的为        

 

查看答案和解析>>

科目:高中数学 来源:北京市西城区2010年高三一模数学(理)试题 题型:解答题

(本小题满分13分)

    对于各项均为整数的数列,如果(=1,2,3,…)为完全平方数,则称数

具有“性质”。

    不论数列是否具有“性质”,如果存在与不是同一数列的,且

时满足下面两个条件:①的一个排列;②数列具有“性质”,则称数列具有“变换性质”。

(I)设数列的前项和,证明数列具有“性质”;

(II)试判断数列1,2,3,4,5和数列1,2,3,…,11是否具有“变换性质”,具有此性质的数列请写出相应的数列,不具此性质的说明理由;

(III)对于有限项数列:1,2,3,…,,某人已经验证当时,

数列具有“变换性质”,试证明:当”时,数列也具有“变换性质”。

 

查看答案和解析>>

同步练习册答案