精英家教网 > 高中数学 > 题目详情
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC且交SC于点N.
(1)求证:平面SAC⊥平面AMN;
(2)求二面角D-AC-M的余弦值.
分析:(1)利用面面垂直的判定定理证明平面SAC⊥平面AMN.
(2)利用二面角的定义或建立空间直角坐标系求二面角的大小.
解答:解:(1)证明:∵SA⊥底面ABCD,底面ABCD是正方形,
∴DC⊥SA,DC⊥DA,
∴DC⊥平面SAD,
∴DC⊥AM,
又∵SA=AD,M是SD的中点,
∴AM⊥SD,
∴AM⊥平面SDC
∴SC⊥AM.
由已知AN⊥SC,
∴SC⊥平面AMN.
又SC?平面SAC,
∴平面SAC⊥平面AMN.
(2)取AD的中点F,则MF∥SA.作FQ⊥AC于Q,连结MQ.
∵SA⊥底面ABCD,
∴MF⊥底面ABCD,
∵FQ⊥AC,
∴MQ⊥AC,
∴∠FQM为二面角D-AC-M的平面角.
设SA=AB=a在Rt△MFQ中  MF=
1
2
SA=
a
2
FQ=
2
4
a
MQ=
MF2+FQ2
=
6
4
a

cos∠FQM=
FQ
MQ
=
3
3

∴二面角D-AC-M的余弦值为
3
3

解法2:(1)如图,以A为坐标原点,建立空间直角坐标系A-xyz,由于SA=AB,可设AB=AD=AS=1,
则A(0,0,0),B(0,1,0),C(1,1,0),D(1,0,0),S(0,0,1),M(
1
2
,0,
1
2
)

AM
=(
1
2
,0,
1
2
)
CS
=(-1,-1,1)
AM
CS
=0
,∴
AM
CS
….(4分)
又∵SC⊥AN且AN∩AM=A,
∴SC⊥平面AMN.
又SC?平面SAC
∴平面SAC⊥平面AMN.
(2)∵SA⊥底面ABCD,
AS
是平面ABCD的一个法向量,
AS
=(0,0,1)

设平面ACM的一个法向量为
n
=(x,y,z)

AC
=(1,1,0)
AM
=(
1
2
,0,
1
2
)

n
AC
=0
n
AM
=0
n
=(1,-1,-1)

cos?
AS,
n
>=-
3
3

∴二面角D-AC-M的余弦值是
3
3
点评:本题主要考查空间面面垂直的判定,以及空间二面角和直线所成角的大小求法,建立空间直角坐标系,利用向量坐标法是解决此类问题比较简洁的方法.要求熟练掌握相应的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,AD∥BC且AD⊥CD;平面CSD⊥平面ABCD,CS⊥DS,CS=2AD=2;E为BS的中点,CE=
2
,AS=
3
,求:
(Ⅰ)点A到平面BCS的距离;
(Ⅱ)二面角E-CD-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点
(1)求证:EF∥平面SAD
(2)设SD=2CD,求二面角A-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,SA⊥底面ABCD,∠BAD=∠ABC=90°,SA=AB=AD=
1
3
BC=1
,E为SD的中点.
(1)若F为底面BC边上的一点,且BF=
1
6
BC
,求证:EF∥平面SAB;
(2)底面BC边上是否存在一点G,使得二面角S-DG-A的正切值为
2
?若存在,求出G点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E,F分别为AB,SC的中点.
(1)证明EF∥平面SAD;
(2)设SD=2DC,求二面角A-EF-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,平面SAD⊥平面ABCD.底面ABCD为矩形,AD=
2
a,AB=
3
a
,SA=SD=a.
(Ⅰ)求证:CD⊥SA;
(Ⅱ)求二面角C-SA-D的大小.

查看答案和解析>>

同步练习册答案