某人在C点测得某塔在南偏西80°的O处,塔顶A的仰角为45°,此人沿南偏东40°方向前进10米到D处,测得塔顶A的仰角为30°,求塔OA的高度?![]()
h=10,或h=-5(舍).
【解析】
试题分析:如图,
![]()
设塔高为h,在Rt△AOC中,∠ACO=45°,则OC=OA=h.…(2分)在Rt△AOD中,∠ADO=30°,则OD=h, (4分)
在△OCD中,∠OCD=120°,CD=10,由余弦定理得:OD2=OC2+CD2-2OC·CDcos∠OCD,即(h)2=h2+102-2h×10×cos120° (8分),
∴h2-5h-50=0,解得h=10,或h=-5(舍). 12分
考点:正弦定理、余弦定理的应用。
点评:典型题,本题综合考查正弦定理、余弦定理的应用,本题解答结合图形,在不同的几个三角形中,灵活运用正弦定理或余弦定理,反映应用数学知识的灵活性。解决“追击问题”,测量高度或距离问题,准确绘制几何图形,明确边、角,是解题的关键。
科目:高中数学 来源: 题型:
某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为( )
A.15米 B.
5米
C.10米 D.12米
查看答案和解析>>
科目:高中数学 来源: 题型:
某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为( )
(A)15米 (B)5米 (C)10米 (D)12米
查看答案和解析>>
科目:高中数学 来源:0103 模拟题 题型:单选题
| 某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为 |
| |
|
[ ] |
| A.15米 B.5米 C.10米 D.12米 |
查看答案和解析>>
科目:高中数学 来源: 题型:
某人在C点测得某塔在南偏西800, 塔顶A的仰角为450, 此人沿南偏东400方向前进10米到D,测得塔顶A的仰角为300,则塔高为( )
A.15米 B.5米 C.10米 D.12米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com