| A. | a≤1 | B. | a≤0 | C. | a>0或a≤-1 | D. | a>2 |
分析 求导数得到f′(x)=3x2-2ax-3,根据条件可得到f′(x)≥0在x∈[1,+∞)恒成立,结合二次函数的性质得到关于a的不等式组,解出即可.
解答 解:f′(x)=3x2-2ax-3;
∵f(x)在[1,+∞)上是增函数;
∴f′(x)≥0在x∈[1,+∞)上恒成立;
而△=4a2+36>0,故$\left\{\begin{array}{l}{\frac{a}{3}<1}\\{f′(1)=3-2a-3≥0}\end{array}\right.$;
解得:a≤0
故选:B.
点评 考查函数单调性和函数导数符号的关系,基本初等函数的求导,二次函数符号和判别式△的关系,要熟悉二次函数的图象.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,6] | B. | (0,6) | C. | (-∞,0]∪[6,+∞) | D. | (-∞,0)∪(6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com