精英家教网 > 高中数学 > 题目详情
10.某空间几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.10πB.C.D.$\frac{9}{4}$π

分析 利用三视图的空间几何体的结构特征,镶嵌在长方体中求解.

解答 解:根据三视图得出几何体为放倒的直三棱柱,
把它镶嵌在长方体中,长宽为2,高为1,
∴体对角线外接球的半径,
∴R=$\frac{1}{2}×\sqrt{4+4+1}$=$\frac{3}{2}$,
∴该几何体的外接球表面积为:4π×$\frac{9}{4}$=9π,
故选C.

点评 本题综合考查了空间几何体的三角图的运用,空间思维能力的运用,属于中档题,构造思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在数列中,主要是两大问题,一是:求数列的通项;二是:求和.已知数列{an}的前n项和为Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(1)写出a1,a2,a3,a4的值(只写结果),并猜想{an}的通项公式;
(2)用数学归纳法,证明你的猜想是正确的.(这种求数列通项的方法,称之为数学归纳法)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cos(α-$\frac{2π}{7}$)=-$\frac{\sqrt{7}}{4}$,且α∈(-$\frac{π}{2}$,0),则sin(α+$\frac{5π}{7}$)等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知定义在R上的函数f(x)的图象关于点(-$\frac{3}{4}$,0)对称,且满足f(x)=-f(x+$\frac{3}{2}}$),又f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2008)=(  )
A.669B.670C.2008D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,cosx),设函数 f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$.
(1)求函数最小正周期;
(2)若f(α)=$\frac{4}{5}$,($\frac{π}{6}$≤α≤$\frac{5}{12}$π),求 sin2α的值;
(3)把函数f(x)的图象向右平移$\frac{π}{6}$个单位得到g(x)的图象,若关于x的方程 g(x)-k=0,在区间[0,$\frac{π}{2}$]有且只有一个实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+ax+3.
(1)当a=-4 时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,若N=5,则输出的S值等于$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=x3-ax2-3x,若f(x)在[1,+∞)上是增函数,则实数a的取值范围是(  )
A.a≤1B.a≤0C.a>0或a≤-1D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:若存在正数x∈(2,+∞)使2x(x-a)<1成立,命题q:函数y=lg(x2+2ax+a)值域为R,如果p∧q是假命题,p∨q真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案