分析 (1)根据向量数量积的定义结合三角函数的倍角公式,辅助角公式将函数进行化简进行求解即可.
(2)根据条件,结合两角和差的正弦公式进行化简求解即可.
(3)根据三角函数的图象平移关系先求出g(x)的表达式,结合函数与方程之间的关系,利用数形结合进行求解即可.
解答 解:(1)f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$),
则函数最小正周期T=$\frac{2π}{2}=π$;![]()
(2)若f(α)=$\frac{4}{5}$,
则sin(2α+$\frac{π}{6}$)=$\frac{4}{5}$,
∵$\frac{π}{6}$≤α≤$\frac{5}{12}$π,
∴$\frac{π}{2}$≤2α+$\frac{π}{6}$≤π,
则cos(2α+$\frac{π}{6}$)=-$\sqrt{1-si{n}^{2}(2α+\frac{π}{6})}$=-$\frac{3}{5}$,
则sin2α=sin(2α+$\frac{π}{6}$-$\frac{π}{6}$)=sin(2α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(2α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{4}{5}×\frac{\sqrt{3}}{2}-(-\frac{3}{5})×\frac{1}{2}$=$\frac{3+4\sqrt{3}}{10}$,
(3)把函数f(x)的图象向右平移$\frac{π}{6}$个单位,得g(x)=f(x-$\frac{π}{6}$)=sin(2x-$\frac{π}{6}$),
令2x-$\frac{π}{6}$=t,
∵0≤x≤$\frac{π}{2}$,
∴-$\frac{π}{6}$≤t≤$\frac{5π}{6}$,
若关于x的方程 g(x)-k=0,在区间[0,$\frac{π}{2}$]有且只有一个实数根,
等价为g(x)与直线y=k在区间[0,$\frac{π}{2}$]上有且只有一个交点,
由正弦函数的图象知$-\frac{1}{2}$≤k<$\frac{1}{2}$或k=1,
∴实数k的取值范围是$-\frac{1}{2}$≤k<$\frac{1}{2}$或k=1.
点评 本题主要考查三角函数的图象和性质以及向量数量积公式的应用,利用三角函数的辅助角公式以及两角和差的正弦公式,以及函数与方程之间的关系进行转化是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2},+∞}$) | B. | (-∞,$\frac{1}{2}}$) | C. | (-∞,-2)∪(-2,$\frac{1}{2}}$) | D. | (-2,$\frac{2}{3}}$)∪(${\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,1] | B. | [1,+∞) | C. | (-∞,-1] | D. | (-∞,-1]∪[1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{6}$ | B. | $\frac{\sqrt{13}}{4}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{\sqrt{3}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,6] | B. | (0,6) | C. | (-∞,0]∪[6,+∞) | D. | (-∞,0)∪(6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com