精英家教网 > 高中数学 > 题目详情
16.函数f(x)=ax-cosx在(-∞,+∞)上是单调增函数,则实数a的取值范围是(  )
A.[-1,1]B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)

分析 求出函数f(x)的导函数,令导函数大于等于0在(-∞,+∞)上恒成立,分析可得a的范围.

解答 解:∵f(x)=ax-cosx,
∴f′(x)=a+sinx,
∵f(x)=ax-cosx在(-∞,+∞)上是单调增函数,
∴a+sinx≥0在(-∞,+∞)上恒成立,
∴a≥1,
故选:B.

点评 解决函数的单调性已知求参数范围问题,常求出导函数,令导函数大于等于(或小于等于)0恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.△ABC的外接圆半径为2,a=2$\sqrt{3}$,则A=(  )
A.30°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A,B,C所对的边分别为a,b,c.向量$\overrightarrow{m}$=(a+b+c,3c),$\overrightarrow{n}$=(b,c+b-a)平行.
(1)求A;
(2)若a=$\sqrt{3}$,b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列命题正确的是(  )
A.“x<1”是“x2-3x+2>0”的必要不充分条件
B.命题“若x2-3x+2=0,则x=2”的否命题为“若x2-3x+2=0,则x≠2
C.若p∧q为假命题,则p,q均为假命题
D.对于命题p:?x∈R,使得x2+x-1<0,则?p:?x∈R,均有x2+x-1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.用分数指数幂表示下列各式:
(1)$\root{3}{{x}^{2}}$(x>0);(2)$\root{4}{(a+b)^{3}}$(a+b>0);(3)$\root{3}{(m-n)^{2}}$(m>n);
(4)$\sqrt{(m-n)^{4}}$(m>n);(5)$\sqrt{{p}^{6}{q}^{5}}$(q>0);(6)$\frac{{m}^{3}}{\sqrt{m}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知cos(α-$\frac{2π}{7}$)=-$\frac{\sqrt{7}}{4}$,且α∈(-$\frac{π}{2}$,0),则sin(α+$\frac{5π}{7}$)等于(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{7}}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.随机抽取某中学甲乙两班10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高(请直接给出结论);
(2)现分别从甲乙两班不低于173cm的同学中各随机抽取1人(共抽取两人),请用抽取学生的身高数据表示所有不同的抽取结果.例如:用(182,178)表示分别从甲乙两班抽取身高为182cm和178cm的学生;
(3)在(2)的条件下,先抽取两人中甲班身高不低于乙班同学身高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,cosx),设函数 f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$.
(1)求函数最小正周期;
(2)若f(α)=$\frac{4}{5}$,($\frac{π}{6}$≤α≤$\frac{5}{12}$π),求 sin2α的值;
(3)把函数f(x)的图象向右平移$\frac{π}{6}$个单位得到g(x)的图象,若关于x的方程 g(x)-k=0,在区间[0,$\frac{π}{2}$]有且只有一个实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的顶点在原点,始边与x轴的正半轴重合.
(1)若终边经过点P(-1,2),求sinαcosα的值;
(2)若角α的终边在直线y=-3x上,求10sinα+$\frac{3}{cosα}$的值.

查看答案和解析>>

同步练习册答案