精英家教网 > 高中数学 > 题目详情
17.已知实数a,b,c,d满足(a-lnb)2+(c-d)2=0,则(a-c)2+(b-d)2的最小值为$\frac{1}{2}$.

分析 实数a,b,c,d满足(a-lnb)2+(c-d)2=0,可得a=lnb,c=d.令y=f(x)=lnx,y=g(x)=x,转化为求上述两曲线之间的最小距离,设直线y=x+m与曲线f(x)=lnx相切于点P(x0,y0).利用导数的几何意义求出切点,进而得出.

解答 解:实数a,b,c,d满足(a-lnb)2+(c-d)2=0,∴a=lnb,c=d.
令y=f(x)=lnx,y=g(x)=x,
设直线y=x+m与曲线f(x)=lnx相切于点P(x0,y0).
f′(x)=$\frac{1}{x}$,∴$\frac{1}{{x}_{0}}$=1,解得x0=1,可得P(1,0),
代入切线方程可得:0=1+m,解得m=-1.
则两条平行线y=x,y=x-1的距离d=$\frac{1}{\sqrt{2}}$.
∴(a-c)2+(b-d)2的最小值为d2=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了导数的几何意义、两点之间的距离公式、点到直线的距离公式、平行线之间的距离公式、等价转化方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知△ABC的内角A,B,C所对的边分别为a,b,c.向量$\overrightarrow{m}$=(a+b+c,3c),$\overrightarrow{n}$=(b,c+b-a)平行.
(1)求A;
(2)若a=$\sqrt{3}$,b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.随机抽取某中学甲乙两班10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
(1)根据茎叶图判断哪个班的平均身高较高(请直接给出结论);
(2)现分别从甲乙两班不低于173cm的同学中各随机抽取1人(共抽取两人),请用抽取学生的身高数据表示所有不同的抽取结果.例如:用(182,178)表示分别从甲乙两班抽取身高为182cm和178cm的学生;
(3)在(2)的条件下,先抽取两人中甲班身高不低于乙班同学身高的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,cosx),设函数 f(x)=$\overrightarrow a$•$\overrightarrow b$-$\frac{1}{2}$.
(1)求函数最小正周期;
(2)若f(α)=$\frac{4}{5}$,($\frac{π}{6}$≤α≤$\frac{5}{12}$π),求 sin2α的值;
(3)把函数f(x)的图象向右平移$\frac{π}{6}$个单位得到g(x)的图象,若关于x的方程 g(x)-k=0,在区间[0,$\frac{π}{2}$]有且只有一个实数根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设抛物线y2=2px(p>0)的焦点为F,准线为l,过抛物线上一点A作l的垂线,垂足为B,设C($\frac{7}{2}$p,0),AF与BC相交于点E,若|CF|=2|AF|,且△ACE的面积为3$\sqrt{2}$,则p的值为(  )
A.$\sqrt{6}$B.2C.3D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,若N=5,则输出的S值等于$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,则f($\frac{5}{2}$)=(  )
A.-$\frac{1}{2}$B.-1C.-5D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知角α的顶点在原点,始边与x轴的正半轴重合.
(1)若终边经过点P(-1,2),求sinαcosα的值;
(2)若角α的终边在直线y=-3x上,求10sinα+$\frac{3}{cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=$\frac{{x}^{3}+sinx}{1+{x}^{2}}$+3的最大值、最小值分别为M、n,则M+n=(  )
A.0B.3C.6D.9

查看答案和解析>>

同步练习册答案