分析 (1)由Sn+an=2-$\frac{2}{{2}^{n}}$.(n∈N*),分别令n=1,2,3,4,即可得出a1,a2,a3,a4.猜想an=$\frac{n}{{2}^{n}}$,
(2)检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立
解答 解:(1)∴Sn+an=2-$\frac{2}{{2}^{n}}$,
∴S1+a1=2-$\frac{2}{2}$,
∴a1=$\frac{1}{2}$,
同理可得a2=$\frac{2}{4}$=$\frac{1}{2}$,a3=$\frac{3}{8}$,a4=$\frac{4}{16}$=$\frac{1}{4}$,
猜想an=$\frac{n}{{2}^{n}}$,
(2)下面用数学归纳法证明.
(i)当n=1时,a1=$\frac{1}{2}$成立;
(ii)假设当n=k时,猜想成立,即ak=$\frac{k}{{2}^{k}}$,
那么当n=k+1时,ak+1=Sk+1-Sk=-ak+1+2-$\frac{2}{{2}^{k+1}}$+ak-2+$\frac{2}{{2}^{k}}$,
∴2ak+1=ak+$\frac{1}{{2}^{k}}$=$\frac{k}{{2}^{k}}$+$\frac{1}{{2}^{k}}$=$\frac{k+1}{{2}^{k}}$,
∴ak+1=$\frac{k+1}{{2}^{k+1}}$,
∴当n=k+1时猜想成立,
由(i),(ii)可知,对?n∈N*,an=$\frac{n}{{2}^{n}}$.
点评 本题考查了数列的递推式、数学归纳法、观察分析猜想归纳的能力,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,$\frac{e}{2}}$) | B. | (1,$\frac{e}{2}}$] | C. | (-∞,0)∪(1,$\frac{e}{2}}$] | D. | (-∞,0)∪(1,$\frac{e}{2}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2},+∞}$) | B. | (-∞,$\frac{1}{2}}$) | C. | (-∞,-2)∪(-2,$\frac{1}{2}}$) | D. | (-2,$\frac{2}{3}}$)∪(${\frac{2}{3}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |r|趋近于0时,没有非线性相关关系 | B. | |r|越接近于1时,线性相关程度越强 | ||
| C. | |r|越大,相关程度越大 | D. | |r|越小,相关程度越大 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com