精英家教网 > 高中数学 > 题目详情
20.在数列中,主要是两大问题,一是:求数列的通项;二是:求和.已知数列{an}的前n项和为Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(1)写出a1,a2,a3,a4的值(只写结果),并猜想{an}的通项公式;
(2)用数学归纳法,证明你的猜想是正确的.(这种求数列通项的方法,称之为数学归纳法)

分析 (1)由Sn+an=2-$\frac{2}{{2}^{n}}$.(n∈N*),分别令n=1,2,3,4,即可得出a1,a2,a3,a4.猜想an=$\frac{n}{{2}^{n}}$,
(2)检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立

解答 解:(1)∴Sn+an=2-$\frac{2}{{2}^{n}}$,
∴S1+a1=2-$\frac{2}{2}$,
∴a1=$\frac{1}{2}$,
同理可得a2=$\frac{2}{4}$=$\frac{1}{2}$,a3=$\frac{3}{8}$,a4=$\frac{4}{16}$=$\frac{1}{4}$,
猜想an=$\frac{n}{{2}^{n}}$,
(2)下面用数学归纳法证明.
(i)当n=1时,a1=$\frac{1}{2}$成立;
(ii)假设当n=k时,猜想成立,即ak=$\frac{k}{{2}^{k}}$,
那么当n=k+1时,ak+1=Sk+1-Sk=-ak+1+2-$\frac{2}{{2}^{k+1}}$+ak-2+$\frac{2}{{2}^{k}}$,
∴2ak+1=ak+$\frac{1}{{2}^{k}}$=$\frac{k}{{2}^{k}}$+$\frac{1}{{2}^{k}}$=$\frac{k+1}{{2}^{k}}$,
∴ak+1=$\frac{k+1}{{2}^{k+1}}$,
∴当n=k+1时猜想成立,
由(i),(ii)可知,对?n∈N*,an=$\frac{n}{{2}^{n}}$.

点评 本题考查了数列的递推式、数学归纳法、观察分析猜想归纳的能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.对任意x∈R,若|x-3|+|x+2|>a恒成立,求实数a的取值范围a<5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=(1+$\sqrt{3}$tanx)cosx,x∈[0,$\frac{π}{6}$],则f(x)的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\left\{\begin{array}{l}{e^x},x≤1\\-\frac{1}{x-1},x>1\end{array}$方程f(x)-k(x+1)=0有两个不等实根,则实数k的取值范围为(  )
A.(1,$\frac{e}{2}}$)B.(1,$\frac{e}{2}}$]C.(-∞,0)∪(1,$\frac{e}{2}}$]D.(-∞,0)∪(1,$\frac{e}{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow i$与$\overrightarrow j$为相互垂直的单位向量,$\overrightarrow a$=$\overrightarrow i$-2$\overrightarrow j$,$\overrightarrow b$=$\overrightarrow i$+λ$\overrightarrow j$,且$\overrightarrow a$与$\overrightarrow b$的夹角为锐角,则实数λ的取值范围是(  )
A.($\frac{1}{2},+∞}$)B.(-∞,$\frac{1}{2}}$)C.(-∞,-2)∪(-2,$\frac{1}{2}}$)D.(-2,$\frac{2}{3}}$)∪(${\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对两个变量的相关系数r,下列说法中正确的是(  )
A.|r|趋近于0时,没有非线性相关关系B.|r|越接近于1时,线性相关程度越强
C.|r|越大,相关程度越大D.|r|越小,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{3}$x3-$\frac{3}{2}$x2+(3a-1)x+1,g(x)=alnx-x+1.
(1)若f(x)在R上不单调,求a的取值范围.
(2)若当x≥1时,g(x)≤0恒成立,求a的取值范围.
(3)若a≥0,令F(x)=f(x)-g(x),试讨论F(x)的导函数F′(x)的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设A={1,3,a},B={1,a2},问是否存在这样的实数a,使得A∪B={1,a,3},A∩B={1,a}同时成立?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某空间几何体的三视图如图所示,则该几何体的外接球表面积为(  )
A.10πB.C.D.$\frac{9}{4}$π

查看答案和解析>>

同步练习册答案