分析 先利用同角三角函数、两角和公式对函数解析式化简,利用x的范围确定($\frac{π}{6}$+x)的范围,进而利用正弦函数的性质求得答案.
解答 解:f(x)=(1+$\sqrt{3}$tanx)cosx,
=(1+$\frac{\sqrt{3}sinx}{cosx}$)cosx,
=cosx+$\sqrt{3}$sinx,
=2($\frac{1}{2}$cosx+$\frac{\sqrt{3}}{2}$sinx),
=2sin($\frac{π}{6}$+x).
∵x∈[0,$\frac{π}{6}$],
∴$\frac{π}{6}$+x∈[$\frac{π}{6}$,$\frac{π}{3}$],
∴f(x)的最大值为$\sqrt{3}$.
故答案是:$\sqrt{3}$.
点评 本题主要考查了两角和公式的化简求值,正弦函数的单调性,三角函数的最值.考查了学生对三角函数基础知识的综合运用.
科目:高中数学 来源: 题型:选择题
| A. | e-1 | B. | e | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 0或1 | C. | -1或0 | D. | 1或-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 高一 | 高二 | 高三 | 总人数 | |
| 人数 | 800 | 500 | ? | |
| 样本人数 | 120 | 380 |
| A. | 1900 | B. | 1600 | C. | 1800 | D. | 1700 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{3}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{\sqrt{7}}{4}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com