精英家教网 > 高中数学 > 题目详情
10.对任意x∈R,若|x-3|+|x+2|>a恒成立,求实数a的取值范围a<5.

分析 首先分析题目已知不等式|x+2|+|x-3|>a恒成立,求k的取值范围,即需要a小于|x+2|+|x-3|的最小值即可.对于求|x+2|+|x-3|的最小值,可以分析它几何意义:在数轴上点x到点-2的距离加上点x到点3的距离.分析得当x在-2和3之间的时候,取最小值,即可得到答案.

解答 解:已知不等式|x+2|+|x-3|>a恒成立,即需要a小于|x+2|+|x-3|的最小值即可.
故设函数y=|x+2|+|x-3|,设-2、3、x在数轴上所对应的点分别是A、B、P.
则函数y=|x+2|+|x-3|的含义是P到A的距离与P到B的距离的和.
可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.
即:y=|x+2|+|x-3|=|PA|+|PB|≥|AB|=5.即|x+2|+|x-3|的最小值为5.
即:a<5.
故答案为:a<5.

点评 此题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x-a|+|x-b|类型的函数可以用分析几何意义的方法求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知四棱椎P-ABCD的底面是边长为6的正方形,且该四棱椎的体积为96,则点P到面ABCD的距离是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行,且对?$θ∈[0\;,\;\;\frac{π}{2}]$,|f(cosθ)-f(sinθ)|≤b恒成立,则b的最小值为(  )
A.e-1B.eC.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,a、b、c分别是角A、B、C的对边,若a2+b2=2016c2,则$\frac{tanA•tanB}{{tanC({tanA+tanB})}}$=$\frac{2015}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲、乙、丙三位同学相互传球,第一次由甲将球传出去,每次传球时,传球者将球等可能地传给另外2个人中的任何1人,经过3次传球后,球仍在甲手中的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,若B=45°,a=x,b=2,若△ABC有两解,则x的取值范围是(  )
A.(2,+∞)B.(0,2)C.$({2,2\sqrt{2}})$D.$({\sqrt{2},2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的奇函数f(x)满足f(x+1)=f(x-1),数列{an}的前n项和为Sn,且Sn=2an+2,则f(an)=(  )
A.0B.0或1C.-1或0D.1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校进行一次分层抽样调查,结果如下表实数,则表中“?”出的数字为(  )
高一高二高三总人数
人数800500
样本人数120380
A.1900B.1600C.1800D.1700

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在数列中,主要是两大问题,一是:求数列的通项;二是:求和.已知数列{an}的前n项和为Sn,且Sn+an=2-$\frac{2}{{2}^{n}}$.
(1)写出a1,a2,a3,a4的值(只写结果),并猜想{an}的通项公式;
(2)用数学归纳法,证明你的猜想是正确的.(这种求数列通项的方法,称之为数学归纳法)

查看答案和解析>>

同步练习册答案