精英家教网 > 高中数学 > 题目详情

已知集合数学公式,则集合n可用列举法表示为________.

{0,-1}
分析:先将与4化成以2为底的指数,根据y=2x是单调递增函数,可求出x的取值范围,而x∈Z,可得结论.
解答:∵

根据y=2x是单调递增函数可知-1<x+1<2
解得-2<x<1
而x∈Z
∴x=0,-1
∴n={0.-1}
故答案为:{0,-1}
点评:本题主要考查了集合的表示,以及指数不等式的解法,同时考查了运算求解的能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

14、已知集合M={x|1≤x≤4,x∈N},对它的非空子集A,可将A中每个元素k,都乘以(-1)k再求和(如A={1,2,4},可求得和为(-1)1•1+(-1)2•2+(-1)4•4=5),则对M的所有非空子集,这些和的总和是
16

查看答案和解析>>

科目:高中数学 来源: 题型:

5、已知集合M∈{1,-2,3},N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|1≤x≤10,x∈N},对它的非空子集A,将A中每个元素k,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)•1+(-1)3•3+(-1)6•6=2,则对M的所有非空子集,这些和的总和是
2560
2560

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有穷数列A:a1,a2,…,an,(n≥2).若数列A中各项都是集合{x|-1<x<1}的元素,则称该数列为数列.对于数列A,定义如下操作过程T:从A中任取两项ai,aj,将
ai+aj
1+aiaj
的值添在A的最后,然后删除ai,aj,这样得到一个n-1项的新数列A1(约定:一个数也视作数列).若A1还是数列,可继续实施操作过程T,得到的新数列记作A2,…,如此经过k次操作后得到的新数列记作Ak
(Ⅰ)设A:0,
1
2
1
3
…请写出A1的所有可能的结果;
(Ⅱ)求证:对于一个n项的数列A操作T总可以进行n-1次;
(Ⅲ)设A:-
5
7
,-
1
6
,-
1
5
,-
1
4
5
6
1
2
1
3
1
4
1
5
1
6
…求A9的可能结果,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各选一个数作为点的坐标,则这样的坐标在直角坐标系中可表示第三、四象限内多少个不同点(  )

查看答案和解析>>

同步练习册答案