精英家教网 > 高中数学 > 题目详情

已知函数.
(I)讨论函数的单调性;
(Ⅱ)当时,恒成立,求的取值范围.

(I)单调递增;单调递增,单调递减.
(Ⅱ).

解析试题分析:(I)根据单调函数的性质,分讨论的单调性,即可得到结论.
(Ⅱ)注意到“当时,恒成立”,等价于恒成立,因此,通过确定,分以下三种情况讨论:
,得出结论:.        12分
试题解析:(I)单调递增
单调递增,单调递减        6分
(Ⅱ)等价于恒成立,

(1)当时,,所以单调递增,,与题意矛盾
(2)当时,恒成立,所以单调递减,所以
(3)当时,,所以单调递增,,与题意矛盾,综上所述:        12分
考点:函数的单调性,应用导数研究函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)的导函数为f ′(x),且对任意x>0,都有f ′(x)>
(Ⅰ)判断函数F(x)=在(0,+∞)上的单调性;
(Ⅱ)设x1,x2∈(0,+∞),证明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)请将(Ⅱ)中的结论推广到一般形式,并证明你所推广的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数均为正常数),设函数处有极值.
(1)若对任意的,不等式总成立,求实数的取值范围;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1) 求函数上的最小值;
(2) 若对一切恒成立,求实数的取值范围;
(3) 证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的减函数.
(Ⅰ)求曲线在点(1,f(1))处的切线方程;
(Ⅱ)若上恒成立,求的取值范围;
(Ⅲ)关于的方程()有两个根(无理数e=2.71828),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)若函数上单调递减,求实数的取值范围;
(Ⅲ)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)证明:当
(Ⅱ)设当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若是函数的极值点,求的值;
(2)求函数的单调区间.

查看答案和解析>>

同步练习册答案