精英家教网 > 高中数学 > 题目详情
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对?x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1,f (x1))和(x2,g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe-x+1≤0恒成立,求实数a的取值范围.
分析:(1)根据对一切x∈(0,+∞),均有ex≥kx≥lnx恒成立,也就是
ex
x
≥k≥
lnx
x
在x∈(0,+∞)恒成立,下面只要求出函数的最小(大)值,使得(
ex
x
min≥k≥(
lnx
x
)max
即可.
(2)①由题知:h(x)即为y=e x1•x+e x1-x1 e x1也为y=lnx2=
1
x2
(x-x2)
即y=
1
x2
x
+lnx2-1,根据两个函数为同一个函数进行比较,即可得到结果.
②要证不等式ax2-x+xe-x+1≤0恒成立,把问题进行等价变形,只要F(x)≤F(x1)=ax2-x1+x1e -x1+1≤0,令F(x)=ax2-x+xe-x+1(x≥x1),利用导数研究其单调性,从而得出实数a的取值范围.
解答:解:(1)依题意对?x∈(0,+∞)均有ex≥kx≥lnx成立
即对任意?x∈(0,+∞)均有
ex
x
≥k≥
lnx
x
成立…(1分)
∴(
ex
x
min≥k≥(
lnx
x
)max

因为(
ex
x
)=
ex(x-1)
x2
y=
ex
x
在(0,1)上减,(1,+∞)增
∴(
ex
x
min=e
(
lnx
x
)=
1-lnx
x2
y=
lnx
x
在(0,e)上减,(e,+∞)增
(
lnx
x
)max=
1
e
即k的取值范围是[
1
e
,e]
(2)由题知:h(x)即为y-e x1=e x1(x-x1)即y=e x1•x+e x1-x1 e x1
也为y=lnx2=
1
x2
(x-x2)
即y=
1
x2
x
+lnx2-1
ex1=
1
x2
ex1-x1ex1=lnx2-1
…(6分)
又x1=0,∴e x1>1  即
1
x2
>1⇒x1>1
即x1>1>x2…(8分)
(3)令F(x)=ax2-x+xe-x+1(x≥x1
∴F′(x)=-1-xe-x+e-x=-1+e-x(1-x)( x≥x1)
又x≥x1>1,F′(x)=-1-xe-x+e-x=-1+e-x(1-x)<0
即F(x)=ax2-x+xe-x+1(x≥x1)单调减,
所以只要F(x)≤F(x1)=ax2-x1+x1e -x1+1≤0
即a+x1-x1e x1+e x1≤0…(12分)
ex1=
1
x2
ex1-x1ex1=lnx2-1

x1=-lnx2
ex1-x1ex1=lnx2-1

x1-x1ex1+ex1=-1
故只要a+x1-x1ex1+ex1=a-1≤0得:
a≤1
综上,实数a的取值范围是(-∞,1]…(14分)
点评:本题考查函数性质和导数的综合应用,本题解题的关键是利用导数方法求函数的最值,利用函数思想时也要用导数来求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案