精英家教网 > 高中数学 > 题目详情
(2013•杭州一模)设Q为圆C:x2+y2+6x+8y+21=0上任意一点,抛物线y2=8x的准线为l.若抛物线上任意一点P到直线l的距离为m,则m+|PQ|的最小值为
41
-2
41
-2
分析:先根据圆的方程求得圆心坐标和半径,抛物线方程求得焦点坐标和准线方程,根据根据抛物线的定义可知,P到准线的距离等于点P到焦点F的距离,根据图象可知当P,Q,F三点共线时,P到点Q的距离与点P到抛物线的焦点距离之和的最小,为圆心到焦点F的距离减去圆的半径.
解答:解:圆C:x2+y2+6x+8y+21=0 即 (x+3)2+(y+4)2=4,表示以C(-3,-4)为圆心,半径等于2的圆.
抛物线y2=8x的准线为l:x=-2,焦点为F(2,0),
根据抛物线的定义可知点P到准线的距离等于点P到焦点F的距离,
进而推断出当P,Q,F三点共线时P到点Q的距离与点P到抛物线的焦点距离之和的最小为:
|FC|-r=
(2+3)2+(0-4)2
-2=
41
-2,
故答案为 
41
-2.
点评:本题主要考查了抛物线的应用.考查了学生转化和化归,数形结合等数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•杭州一模)若实数x,y满足不等式组
y-x≥0
x+y-7≤0
,则2x+y的最大值为
21
2
21
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n-m的最小值为
1
3
,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}满足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1,公差d∈(-1,0).若当且仅当n=9时,数列{an}的前n项和Sn取得最大值,则首项a1取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设a∈R,则“a=4”是“直线l1:ax+2y-3=0与直线l2:2x+y-a=0平行”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州一模)设等差数列{an}的前n项和是Sn,若-am<a1<-am+1(m∈N*,且m≥2),则必定有(  )

查看答案和解析>>

同步练习册答案