精英家教网 > 高中数学 > 题目详情
已知tanα=
3
4
,cos(α+β)=-
7
2
10
,且α∈(0,
π
2
),β∈(-
π
2
π
2
),
(1)求
2cos2
α
2
-sinα-1
2
sin(α+
π
4
)
的值; 
(2)求β的值.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)首先,根据二倍角公式化简,然后,分子分母同除以cosα,从而转化成用tanα表示的式子,然后,代入求值即可;
(2)先求解sin(α+β)的值,然后,求tan(α+β)的值,结合tanβ=tan[(α+β)-α],从而,确定待求的β的值.
解答: 解:(1)
2cos2
α
2
-sinα-1
2
sin(α+
π
4
)

=
cosα-sinα
sinα+cosα

=
1-tanα
1+tanα

=
1-
3
4
1+
3
4

=
1
7

2cos2
α
2
-sinα-1
2
sin(α+
π
4
)
的值为
1
7

(2)∵α∈(0,
π
2
),β∈(-
π
2
π
2
),
∴(α+β)∈(-
π
2
,π),
又∵cos(α+β)=-
7
2
10
<0,
∴(α+β)∈(
π
2
,π),
∴sin(α+β)=
1-cos2(α+β)

=
1-(-
7
2
10
)2
=
2
10

∴tan(α+β)=
sin(α+β)
cos(α+β)

=
2
10
-7
2
10
=-
1
7

∵tanβ=tan[(α+β)-α]
=
tan(α+β)-tanα
1+tan(α+β)tanα

=
-
1
7
-
3
4
1-(-
1
7
3
4

=-
25
31

∴β=-arctan
25
31
点评:本题综合考查了两角和与差的正切公式,角的灵活拆分等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,三个内角A、B、C所对的边分别为a、b、c,若B=60°,a=(
3
-1)c.
(Ⅰ)求角A的大小;
(Ⅱ)已知△ABC的面积为12+4
3
,求函数f(x)=cos2x+asinx的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆交于A、B两点.
(Ⅰ)如果点A的纵坐标为
3
5
,点B的横坐标为
5
13
,求cos(α-β);
(Ⅱ)已知点C(2
3
,-2),
OA
OC
=2
2
,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:
(Ⅰ)△DEF∽△EAF;
(Ⅱ)EF∥CB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=2an-n+1(n∈N*).
(Ⅰ)若数列{an}是等差数列,求数列{
1
anan+1
}的前n项和Sn
(Ⅱ)证明:数列{an+2}不可能是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的一个焦点在抛物线y2=4x的准线上,F1,F2是椭圆C的左、右焦点,P是椭圆C上任意一点,且|PF1|•|PF2|的最大值为2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点M(2,0)的直线与椭圆C相交于两点A、B,满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1,m)在抛物线C:y2=2Px(P>0)上,F为焦点,且|PF|=3.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点T(4,0)的直线l交抛物线C于A,B两点,O为坐标原点.
(ⅰ)求
OA
OB
的值;
(ⅱ)若以A为圆心,|AT|为半径的圆与y轴交于M,N两点,求△MNF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=-x2+(2m+2)x-(m2+4m-3),m为不小于0的整数,其图象交x轴负半轴于点A,交x轴正半轴于点B
(1)求此二次函数的解析式;
(2)设一次函数y=kx+b的图象过点A并与二次函数的图象交于点C,且△ABC的面积为10,求一次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足|z-1|=|z-i|,则此复数z所对应的点的轨迹方程是
 

查看答案和解析>>

同步练习册答案