解答题
设f(x)=x2+bx+c(b,c为常数),方程f(x)-x=0的两个实根为x1,x2,且满足x1>0,x2-x1>1.
(1)求证:b2>2(b+2c);
(2)设0<t<x1,比较f(t)与x1的大小;
(3)当x∈[-1,1]时,对任意x都有|f(x)|≤1,
求证:|1+b|≤2.
证明:(1)∵方程f(x)-x=0的两根为x1,x2,因而有(x2-x1)2=b2-2b+1-4c. 又x2-x1>0,∴b2-2b+1-4c>1,∴b2>2(b+2c). (2)∵x1是方程f(x)-x=0的根,∴x1=f(x1), ∴f(t)-x1=f(t)-f(x1)=(t-x1)(t+x1+b)=(t-x1)(t+1-x2), ∵x1+x2=1-b,∴0<t<x1,∴t-x1<0, 又x2-x1>1,即x1+1-x2<0, ∴t+1-x2<x1+1-x2<0,故f(t)-x1>0. (3)∵x∈[-1,1]时,但有|f(x)|≤1, ∴|f(0)|=|c|≤1,|f(1)|=|1+b+c|≤1, 从而|1+b|=|1+b+c-c|≤|1+b+c|+|-c|=|1+b+c|+|c|≤1+1≤2. |
科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044
设f(x)=是R上的奇函数.
(1)求a的值;
(2)求f(x)的反函数f-1(x);
(3)对任意给的k∈R+,解不等式f-1(x)>log2.
查看答案和解析>>
科目:高中数学 来源:2004年高考教材全程总复习试卷·数学 题型:044
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b,
(1)求证:函数y=f(x)与y=g(x)的图象有两个交点.
(2)设f(x)与g(x)的图象的交点A,B在x轴上的射影为A1,B1,求|A1B1|的取值范围.
(3)求证:当x≤-时,恒有f(x)>g(x).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com