精英家教网 > 高中数学 > 题目详情

一个袋中装有大小相同的黑球和白球共9个,从中任取2个球,记随机变量为取出2球中白球的个数,已知
(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量的分布列及其数学期望.

(I)6个;
(II)随机变量的分布列如下:


0
1
2




 

解析试题分析:(I)设袋中有白球n个,利用古典概型的概率计算公式即可得到P(X=2)=,解出即可;
(II)由(I)可知:袋中共有3个黑球,6个白球.随机变量X的取值为0,1,2,利用超几何分布的概率计算公式可求出相应的概率,即可得出随机变量X的分布列及其数学期望.
试题解析:(Ⅰ)设袋中有白球个,则,   
,解得
(Ⅱ)随机变量的分布列如下:


0
1
2




 

考点:1.古典概型的概率计算公式;2.超几何分布的概率计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

在区间上随机取一实数,则该实数满足不等式的概率为          .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.
(Ⅰ)若n=3,求取到的4个球全是红球的概率;
(Ⅱ)若取到的4个球中至少有2个红球的概率为,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为 .已知比赛中,乙先赢了第一局,求:
(Ⅰ)甲在这种情况下取胜的概率;
(Ⅱ)设比赛局数为X,求X的分布列及数学期望(均用分数作答)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.

(1)求的值;
(2)分别求出甲、乙两组数据的方差
并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.
(注:方差为数据的平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校夏令营有3名男同学和3名女同学,其年级情况如下表:

 
一年级
二年级
三年级
男同学



女同学



 
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)
(1)用表中字母列举出所有可能的结果
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:

 
关注NBA
不关注NBA
合  计
男   生
 
6
 
女   生
10
 
 
合   计
 
 
48
 
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为2/3
⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA与性别有关?
⑵现从女生中抽取2人进一步调查,设其中关注NBA的女生人数为X,求X的分布列与数学期望.
附:,其中

0.15
0.10
0.05
0.025
0.010

2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

有一批产品,其中有12件正品和4件次品,从中任取3件,若表示取到次品的个数,则E=        .

查看答案和解析>>

同步练习册答案