精英家教网 > 高中数学 > 题目详情
已知函数f(n)=sin
6
(n∈Z),则f(1)+f(2)+f(3)+…+f(2008)的值是
3
2
+
3
3
2
+
3
分析:先根据函数的解析式求得函数的周期,进而可求得一个周期内的函数的和,进而看2008是12的多少倍数,进而利用周期性求得答案.
解答:解:∵f(n)=sin
6
(n∈Z),
∴f(n)的周期为T=
π
6
=12
f(1)+f(2)+f(3)+…+f(12)
=
1
2
+
3
2
+1+
3
2
+
1
2
+0-
1
2
-
3
2
-1-
3
2
-
1
2
-0
=0
即从第一项起,每连续12项和为0
∴f(1)+f(2)+f(3)+…+f(2008)
=167×0+f(1)+f(2)+f(3)+f(4)
=
1
2
+
3
2
+1+
3
2

=
3
2
+
3

故答案为:
3
2
+
3
点评:本题考查正弦函数的周期,三角函数值的求法,形如本题的题目类型,一般利用周期解答,注意所求表达式的项数,是易错点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
(I)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数m的值和P的坐标;
(II)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求实数m的取值范围;
(III)在(II)的条件下,过线段MN的中点作x轴的垂线分别与f(x)的图象和g(x)的图象交于S、T点,以S点为切点
作f(x)的切线l1,以T为切点作g(x)的切线l2,是否存在实数m,使得l1∥l2?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l:y=g(x),曲线S:y=F(x).若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x).则称直线l为曲线S的“上夹线”.
(Ⅰ)已知函数f(x)=x-2sinx.求证:y=x+2为曲线f(x)的“上夹线”.
(Ⅱ)观察下图:
精英家教网
根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+log2
x
3-x
(x∈(0,3))

(Ⅰ)求f(x)+f(3-x);并判断函数y=f(x)的图象是否为一中心对称图形;
(Ⅱ)记S(n)=
1
2n
2n-1
i=1
f(1+
i
2n
)(n∈N*)
,求S(n);
(Ⅲ)若函数f(x)的图象与直线x=1,x=2以及x轴所围成的封闭图形的面积为S,试探究S(n)与S的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1(1-x)n
,g(x)=aln(x-1),其中n∈N*,a为常数.
(1)当n=2时,求函数F(x)=f(x)+g(x)的极值;
(2)若对任意的正整数n,当s≥2,x≥2时,f(s)+g(x)≤x-1.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2x,其中a-1≤x≤a+1,a∈R.设集合M={(m,f(n))|m,n∈[a-1,a+1]},若M中的所有点围成的平面区域面积为S,则S的最小值为
2
2

查看答案和解析>>

同步练习册答案