精英家教网 > 高中数学 > 题目详情

已知数学公式=ksinθ•数学公式+(2-cosθ)•数学公式数学公式=数学公式,且数学公式数学公式数学公式数学公式不共线,θ∈(0,π).
(1)求k与θ的关系;
(2)求k=f(θ)的最小值.

解:(1)∵,∴
∴k•sinθ=2-cosθ,

(2)=

=
又∵θ∈(0,π),∴

(当且仅当,即时取等号)
分析:(1)利用向量共线的充要条件列出等式,分离出k.
(2)利用三角函数的二倍角的正弦、余弦公式化简k的函数解析式;利用基本不等式求出最值,注意检验等号何时取得.
点评:本题考查向量共线的充要条件、考查三角函数的二倍角公式、考查利用基本不等式求函数的最值需满足的条件是:一正、二定、三相等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-3x+1,g(x)=ksin(x-
π6
),(k≠0).
(1)问α去何值时,方程f(sinx)=α-sinx在[0,2π]上有两解;
(2)若对任意的x1∈[0,3],总存在x2∈[0,3],使f(x1)=g(x2)成立,求实数k的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,已知向量
a
=(-1,2)
,又点A(8,0),B(n,t),C(ksinθ,t).
(1)若
AB
a
,且|
AB
|=
5
|
OA
|
,求向量
OB

(2)若向量
AC
与向量
a
共线,常数k>0,当f(θ)=tsinθ取最大值4时,求
OA
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定理:“如果两个非零向量
e1
e2
不平行,那么k1
e1
+k2
e2
=
0
(k1,k2∈R)的充要条件是k1=k2=0”.试用上述定理解答问题:
设非零向量
e1
e2
不平行.已知向量
a
=(ksinθ)•
e
1
+(2-cosθ)•
e
2
,向量
b
=
e
1
+
e
2
,且
a
b
.求k与θ的关系式;并当θ∈R时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省岳阳一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知=ksinθ•+(2-cosθ)•=,且不共线,θ∈(0,π).
(1)求k与θ的关系;
(2)求k=f(θ)的最小值.

查看答案和解析>>

同步练习册答案