精英家教网 > 高中数学 > 题目详情
10、设f(x)=|x|x+bx+c,给出下列命题中,所有正确的命题序号是
①②

①b=0,c>0时,f(x)=0仅有一个根;
②c=0时,y=f(x)为奇函数;
③y=f(x)的图象关于点(0,1)对称;
④f(x)=0至少有两个实数根.
分析:①由b=0,c>0,将函数转化为f(x)=|x|x+c=0,易知只有一负根;
②由c=0,将函数转化为f(x)=|x|x+bx,再由f(-x)=-(|x|x+bx)=-f(x),得到函数是奇函数;
③当c=1时,函数为f(x)=|x|x+bx+1,其图象是由f(x)=|x|x+bx的图象向上平移一个单位得到的,所以y=f(x)的图象才关于点(0,1)对称,c为其他值时,不关于(0,1)对称.
④当x>0时,若f(x)=0无根时,由当x<0时开口向下,图象向下无限延展,f(x)与x轴只有一个交点.
解答:解:①b=0,c>0时,f(x)=|x|x+c=0只有一负根,正确;
②c=0时,f(x)=|x|x+bx,而f(-x)=-(|x|x+bx)=-f(x),是奇函数;正确
③当c=1时,y=f(x)的图象关于点(0,1)对称,所以不正确
④当x>0时,△=b2-4c<0f(x)=0无根,则在x<0时f(x)=0只有一根.所以不正确
故答案为:①②
点评:本题主要考查二次函数的图象变换,这里考查的是绝对值变换,还考查了对称性,奇偶性,相应方程根的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市临海市杜桥中学高三(下)3月月考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省重点中学协作体高三第一次联考数学试卷(理科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中数学 来源:2011年广东省高考数学试卷(文科)(解析版) 题型:选择题

设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和(x)对任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),则下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步练习册答案