【题目】如图,在四棱锥
中,
为等边三角形,边长为2,
为等腰直角三角形,
,
,
,平面
平面ABCD.
![]()
(1)证明:
平面PAD;
(2)求平面PAD与平面PBC所成锐二面角的余弦值;
(3)棱PD上是否存在一点E,使得
平面PBC?若存在,求出
的值;若不存在,请说明理由.
【答案】(1)证明见解析;(2)
;(3)棱PD上存在一点E,使得
平面PBC,且
.
【解析】
(1)用面面垂直的性质定理证明线面垂直;
(2)取
的中点
,连接
,得
平面
,以
为
轴,
为
轴,过
平行于
的直线为
轴,建立如图所示的空间直角坐标系,用平面的法向量的夹角求二面角;
(3)假设棱PD上存在一点E,使得
平面PBC,设
,由
与平面
的法向量垂直求得
,如果求不出,说明不存在.
(1)∵平面
平面ABCD,
,平面
平面ABCD
,
平面ABCD,∴
平面
;
(2)取
的中点
,连接
,由于
是等边三角形,所以
,由平面
平面ABCD,得
平面
,
,
以
为
轴,
为
轴,过
平行于
的直线为
轴,建立如图所示的空间直角坐标系,
则
,
,
,
,
,
![]()
,
,设平面
的一个法向量为
,
则
,取
,则
,
,
,
平面
的一个法向量为
,
,
∴平面PAD与平面PBC所成锐二面角的余弦值为
;
(3)假设棱PD上存在一点E,使得
平面PBC,设![]()
,
由(2)
,
,
,又平面
的一个法向量是
,
∴
,解得
,∴
.
∴棱PD上存在一点E,使得
平面PBC,且
.
科目:高中数学 来源: 题型:
【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.
(1)完成下列
列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;
生二孩 | 不生二孩 | 合计 | |
头胎为女孩 | 60 | ||
头胎为男孩 | |||
合计 | 200 |
(2)在抽取的200户家庭的样本中,按照分层抽样的方法在生二孩的家庭中抽取了7户,进一步了解情况,在抽取的7户中再随机抽取4户,求抽到的头胎是女孩的家庭户数
的分布列及数学期望.
附:
| 0.15 | 0.05 | 0.01 | 0.001 |
| 2.072 | 3.841 | 6.635 | 10.828 |
(其中
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线
上任意一点P向x轴作垂线段,垂足为Q,点M是线段
上的一点,且满足![]()
(1)求点M的轨迹C的方程;
(2)设直线
与轨迹c交于
两点,T为C上异于
的任意一点,直线
,
分别与直线
交于
两点,以
为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的右顶点为
,上顶点为
.已知椭圆的离心率为
,
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线
:
与椭圆交于
,
两点,且点
在第二象限.
与
延长线交于点
,若
的面积是
面积的3倍,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线
的焦点为F且斜率为k的直线l交曲线C于
、
两点,交圆
于M,N两点(A,M两点相邻).
(1)求证:
为定值;
(2)过A,B两点分别作曲线C的切线
,
,两切线交于点P,求
与
面积之积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com