求下列函数的值域:
(1) f(x)=;
(2) g(x)=;
(3) y=log3x+logx3-1.
(1)(2)
(3)(-∞,-3]∪[1,+∞).
【解析】(1)由解得-3≤x≤1.
∴ f=的定义域是.∵ y≥0,∴ y2=4+2,
即y2=4+2.令t=-+4.
∵ x∈,由t=0,t=4,t=0,
∴ 0≤t≤4,从而y2∈,即y∈,∴ 函数f的值域是.
(2) g=.
∵ x≠3且x≠4,∴ g≠1且g≠-6.
∴ 函数g的值域是.
(3) 函数的定义域为{x|x>0且x≠1}.
当x>1时,log3x>0,y=log3x+logx3-1≥2 -1=1;
当0<x<1时,log3x<0,y=log3x+logx3-1=-[(-log3x)+(-logx3)]≤-2-1=-3.
所以函数的值域是(-∞,-3]∪[1,+∞).
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第6课时练习卷(解析版) 题型:解答题
已知二次函数f(x)=ax2+bx+c图象的顶点为(-1,10),且方程ax2+bx+c=0的两根的平方和为12,求二次函数f(x)的表达式.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第3课时练习卷(解析版) 题型:填空题
函数y=(x-3)|x|的单调递减区间是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第2课时练习卷(解析版) 题型:填空题
已知函数f(x)=x2-2x,x∈[a,b]的值域为[-1,3],则b-a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第1课时练习卷(解析版) 题型:填空题
已知函数f(x)=alog2x-blog3x+2,若f =4,则f(2 014)的值为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第14课时练习卷(解析版) 题型:填空题
设函数f(x)= (a∈R,e为自然对数的底数).若存在b∈[0,1]使f(f(b))=b成立,则a的取值范围是________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第12课时练习卷(解析版) 题型:填空题
已知函数f(x)=lnx- (m∈R)在区间[1,e]上取得最小值4,则m=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com