分析 (1)若b=2a,a<0,则二次函数f(x)=ax2+bx+c=ax2+2ax+c的图象是开口朝下,且以直线x=-1为对称轴的抛物线,进而得到函数f(x)的单调递减区间;
(2)若a=1,c=2,则二次函数f(x)=ax2+bx+c=x2+bx+2,若函数f(x)在区间(0,2)内有两个不同的零点,则$\left\{\begin{array}{l}△={b}^{2}-8>0\\-\frac{b}{2}∈(0,2)\\ f(2)=6+2b>0\end{array}\right.$,解得实数b的取值范围.
解答 解:(1)若b=2a,a<0,
则二次函数f(x)=ax2+bx+c=ax2+2ax+c的图象是开口朝下,且以直线x=-1为对称轴的抛物线,
此时函数f(x)的单调递减区间为[-1,+∞),
(2)若a=1,c=2,则二次函数f(x)=ax2+bx+c=x2+bx+2,
若函数f(x)在区间(0,2)内有两个不同的零点,
则$\left\{\begin{array}{l}△={b}^{2}-8>0\\-\frac{b}{2}∈(0,2)\\ f(2)=6+2b>0\end{array}\right.$,
解得:b∈(-3,-2$\sqrt{2}$).
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f-1(2x)=2f-1(x) | B. | f-1(2x)=$\frac{1}{2}$f-1(x) | C. | f-1(2x)=[f-1(x)]2 | D. | f-1(2x)=[f-1(x)]${\;}^{\frac{1}{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤0或a>4 | B. | 0≤a<4 | C. | 0<a<4 | D. | 0≤a≤4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com