精英家教网 > 高中数学 > 题目详情

如图,在底面为直角梯形的四棱锥.

⑴求证:

⑵当时,求此四棱锥的表面积.

【命题意图】本小题将直四棱锥的底面设计为梯形,考查平面几何的基础知识.本题通过分层设计,考查了空间平行、垂直等知识,以及表面积的求解,考查学生的空间想象能力、推理论证能力和运算求解能力.

【试题解析】解:(1)证明:由题意知

        (4分)

.

     .               (6分)

DDHBC于点H,连结PH,则同理可证明

并且.

                    (8分)

易得

.

.         (11分)

故此四棱锥的表面积

                          (12分)

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年天津一中高三(下)第二次月考数学试卷(理科)(解析版) 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE:ED=λ,使得二面角C-AN-E的平面角为60°.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省五市高三第一次联考数学试卷(文科)(解析版) 题型:解答题

如图,已知棱锥P-ABCD的底面ABCD为直角梯  形,AB∥CD,AB⊥BC,CD=PB=BC=1,
AB=2,且PB⊥底面ABCD.
(Ⅰ)试在棱PB上求一点M,使CM∥平面PDA;
(Ⅱ)在(Ⅰ)的结论下,求三棱锥P-ADM的体积.

查看答案和解析>>

同步练习册答案