精英家教网 > 高中数学 > 题目详情
深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.
(1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望;
(2)求第二次训练时恰好取到一个新球的概率.
(1)ξ的所有可能取值为0,1,2
设“第一次训练时取到i个新球(即ξ=i)”为事件Ai(i=0,1,2).
因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以
P(A0)=P(ξ=0)=
C23
C26
=
1
5
;P(A1)=P(ξ=1)=
C13
C
13
C26
=
3
5
;P(A2)=P(ξ=2)=
C23
C26
=
1
5

所以ξ的分布列为
ξ012
P
1
5
3
5
1
5
ξ的数学期望为Eξ=0×
1
5
+1×
3
5
+2×
1
5
=1
(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B,
则“第二次训练时恰好取到一个新球”就是事件A0B+A1B+A2B,而事件A0B、A1B、A2B互斥,
所以P(A0B+A1B+A2B)=P(A0B)+P(A1B)+P(A2B)=
1
5
×
C13
C
13
C26
+
3
5
×
C12
C
14
C26
+
1
5
×
C11
C
15
C26
=
3
25
+
8
25
+
1
15
=
38
75
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某学校为了选拔学生参加“XX市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.
(Ⅰ)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;
(Ⅱ)若通过学校选拔测试的学生将代表学校参加市知识竞赛,知识竞赛分为初赛和复赛,初赛中每人最多有5次答题机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛.假设参赛者甲答对每一个题的概率都是
2
3
,求甲在初赛中答题个数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人每射击一次,击中目标得2分,未击中目标得0分.若甲、乙两名同学射击的命中率分别为
3
5
和p,且甲、乙两人各射击一次所得分数之和为2的概率为
9
20
,假设甲、乙两人射击互不影响
(1)求p的值;
(2)记甲、乙两人各射击一次所得分数之和为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

前不久央视记者就“你幸福吗?”采访了走在接头及工作岗位上的部分人员.人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.为了解某地区居民的幸福感,随机对该地区的男、女居民各500人进行了调查,调查数据如表所示:
幸福感指数[0,2)[2,4)[4,6)[6,8)[8,10]
男居民人数1020220125125
女居民人数1010180175125
根据表格,解答下面的问题:
(1)补全频率分布直方图,并根据频率分布直方图估算该地区居民幸福感指数的平均值;
(2)如果居民幸福感指数不小于6,则认为其幸福.据此,又在该地区随机抽取3对夫妻进行调查,用X表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求X的分布列及期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设随机变量ξ的分布列如下:
ξ-101
Pabc
其中a,b,c成等差数列,若E(ξ)=
1
3
,则D(3ξ-1)=(  )
A.4B.
5
3
C.
2
3
D.5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为
3
4
,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为
2
3
,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(Ⅰ)求该射手恰好命中一次得的概率;
(Ⅱ)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设离散型随机变量ξ满足Eξ=3,Dξ=1,则E[3(ξ-1)]等于(  )
A.27B.24C.9D.6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数据的标准差是______________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

执行右边的程序框图,若输入的的值为–2,则输出的值是(   )
A.B. C.  D.

查看答案和解析>>

同步练习册答案