ÈôÊýÁÐ{an}Âú×ã
a2n
-
a2n-1
=p
£¨pΪ³£Êý£¬n¡Ý2£¬n¡ÊN*£©£¬Ôò³ÆÊýÁÐ{an}ΪµÈ·½²îÊýÁУ¬pΪ¹«·½²î£¬ÒÑÖªÕýÊýµÈ·½²îÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ¬a1¡Ùa2£¬É輯ºÏA={Tn|Tn=
1
a1+a2
+
1
a2+a3
+¡­+
1
an+an+1
£¬1¡Ün¡Ü100£¬n¡ÊN*}
£¬È¡AµÄ·Ç¿Õ×Ó¼¯B£¬ÈôBµÄÔªËض¼ÊÇÕûÊý£¬ÔòBΪ¡°ÍêÃÀ×Ó¼¯¡±£¬ÄÇô¼¯ºÏAÖеÄÍêÃÀ×Ó¼¯µÄ¸öÊýΪ£¨¡¡¡¡£©
A£®64B£®63C£®32D£®31
ÉèÊýÁÐ{an}ΪÕýÊýµÈ·½²îÊýÁУ¬pΪ¹«·½²î£¬Ôò
a22
-
a21
=p
£¬
a23
-
a22
=p
£¬
a24
-
a23
=p
£¬
a25
-
a24
=p

¡à
a25
-
a21
=4p

¡ßa1=1£¬¡àa2=
1+p
£¬a5=
1+4p

¡ßa1£¬a2£¬a5³ÉµÈ±ÈÊýÁУ¬
¡à1+p=
1+4p

¡àp=0»òp=2
¡ßa1¡Ùa2£¬¡àp=2
¡àan=
1+2(n-1)
=
2n-1

¡à
1
an+an+1
=
1
2n-1
+
2n+1
=
1
2
£¨
2n+1
-
2n-1
£©
¡àTn=
1
a1+a2
+
1
a2+a3
+¡­+
1
an+an+1
=
1
2
£¨
2n+1
-1£©
¡àAÖеÄÕûÊýÔªËØΪ1£¬2£¬3£¬4£¬5£¬6
¡ßAµÄ·Ç¿Õ×Ó¼¯B£¬ÈôBµÄÔªËض¼ÊÇÕûÊý£¬
¡à¼¯ºÏAÖеÄÍêÃÀ×Ó¼¯µÄ¸öÊýΪ26-1=63
¹ÊÑ¡B£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁйØÓÚÊýÁеÄÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•ÑĮ̀¶þÄ££©ÈôÊýÁÐ{an}Âú×ãan+12-
a
2
n
=d
£¨dΪÕý³£Êý£¬n¡ÊN+£©£¬Ôò³Æ{an}Ϊ¡°µÈ·½²îÊýÁС±£®¼×£ºÊýÁÐ{an}ΪµÈ·½²îÊýÁУ»ÒÒ£ºÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ôò¼×ÊÇÒҵģ¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÈýÃ÷Ä£Ä⣩ÈôÊýÁÐ{an}Âú×ãa¡Üan¡Üb£¬ÆäÖÐa¡¢bÊdz£Êý£¬Ôò³ÆÊýÁÐ{an}ΪÓнçÊýÁУ¬aÊÇÊýÁÐ{an}µÄϽ磬bÊÇÊýÁÐ{an}µÄÉϽ磮ÏÖÒªÔÚÇø¼ä[-1£¬2£©ÖÐÈ¡³ö20¸öÊý¹¹³ÉÓнçÊýÁÐ{bn}£¬²¢Ê¹ÊýÁÐ{bn}ÓÐÇÒ½öÓÐÁ½Ïî²îµÄ¾ø¶ÔֵСÓÚ
1
m
£¬ÄÇôÕýÊýmµÄ×îСȡֵÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013Ä긣½¨Ê¡ÈýÃ÷ÊиßÈýÖÊÁ¿¼ì²éÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈôÊýÁÐ{an}Âú×ãa¡Üan¡Üb£¬ÆäÖÐa¡¢bÊdz£Êý£¬Ôò³ÆÊýÁÐ{an}ΪÓнçÊýÁУ¬aÊÇÊýÁÐ{an}µÄϽ磬bÊÇÊýÁÐ{an}µÄÉϽ磮ÏÖÒªÔÚÇø¼ä[-1£¬2£©ÖÐÈ¡³ö20¸öÊý¹¹³ÉÓнçÊýÁÐ{bn}£¬²¢Ê¹ÊýÁÐ{bn}ÓÐÇÒ½öÓÐÁ½Ïî²îµÄ¾ø¶ÔֵСÓÚ£¬ÄÇôÕýÊýmµÄ×îСȡֵÊÇ£¨ £©
A£®5
B£®
C£®7
D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012Ä긣½¨Ê¡ÈýÃ÷ÊÐÆÕͨ¸ßÖбÏÒµ°àÖÊÁ¿¼ì²éÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈôÊýÁÐ{an}Âú×ãa¡Üan¡Üb£¬ÆäÖÐa¡¢bÊdz£Êý£¬Ôò³ÆÊýÁÐ{an}ΪÓнçÊýÁУ¬aÊÇÊýÁÐ{an}µÄϽ磬bÊÇÊýÁÐ{an}µÄÉϽ磮ÏÖÒªÔÚÇø¼ä[-1£¬2£©ÖÐÈ¡³ö20¸öÊý¹¹³ÉÓнçÊýÁÐ{bn}£¬²¢Ê¹ÊýÁÐ{bn}ÓÐÇÒ½öÓÐÁ½Ïî²îµÄ¾ø¶ÔֵСÓÚ£¬ÄÇôÕýÊýmµÄ×îСȡֵÊÇ£¨ £©
A£®5
B£®
C£®7
D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸