精英家教网 > 高中数学 > 题目详情
极坐标系的极点是直角坐标系的原点,极轴为x轴正半轴.已知曲线C1的极坐标方程为ρ=4cosθ,曲线C2的参数方程为
x=2+2t
y=
3
-2
3
t
(其中t为参数)
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)判断曲线C1和曲线C2的位置关系;若曲线C1和曲线C2相交,求出弦长.
考点:参数方程化成普通方程
专题:坐标系和参数方程
分析:(1)把极坐标方程利用极坐标和直角坐标的互化公式化为直角坐标方程、把参数方程消去参数,化为直角坐标方程.
(2)利用点到直线的距离公式求得圆心到直线的距离,再利用弦长公式求得弦长.
解答: 解:(1)由ρ=4cosθ 可得ρ2=4ρcosθ,化为直角坐标方程为 x2+y2=4x.
∵曲线C2的参数方程为
x=2+2t
y=
3
-2
3
t
(其中t为参数),用代入法消去参数可得
曲线C2 的普通方程为:
3
x+y-3
3
=0

(2)由(1)得,圆C1的圆心为(2,0),半径为2,
圆心到直线的距离为d=
|2
3
+0-3
3
|
2
=
3
2
<2

所以曲线C1和曲线C2的相交,所求弦长为:2
22-(
3
2
)
2
=
13
点评:本题主要考查把极坐标方程、参数方程化为直角坐标方程的方法,点到直线的距离公式、弦长公式的应用,直线和圆的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=4sinxsin2
π
4
+
x
2
)+cos2x(x∈R).
(1)求函数f(x)的值域;
(2)若对任意x∈[
π
6
3
],都有|f(x)-m|<2成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}的前n项和为Sn,已知S1,S3,S2成等差数列
(Ⅰ)求{an}的公比q;
(Ⅱ)a1-a3=3,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位偶数?

查看答案和解析>>

科目:高中数学 来源: 题型:

生产A,B两种产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
产品A 8 12 40 32 8
产品B 7 18 40 29 6
(Ⅰ)试分别估计产品A、产品B为正品的概率;
(Ⅱ)生产一产品件A,若是正品可盈利50元,若是次品则亏损10元;生产一件产品B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下:
①求生产5件产品B所获得的利润不少于300元的概率;
②求生产1件产品A和1件产品B所得的总利润为30元或90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(0,+∞)上的函数f(x)满足:
①当x∈[1,3)时,f(x)=
x-1,1≤x≤2
3-x,2<x<3

②f(3x)=3f(x),
作出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
5
5
,点(1,
2
5
5
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 在x轴上是否存在一定点E,使得对椭圆C的任意一条过E的弦AB,
1
|EA|2
+
1
|EB|2
为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是(0,+∞),且当x>0时,满足
f(x)
x
>f′(x).
(Ⅰ)判断函数y=
f(x)
x
在(0,+∞)上的单调性,并说明理由;
(Ⅱ)三个同学对问题“已知m、n∈N*且n>m≥2,证明(1+m)n>(1+n)m”提出各自的解题思路.
甲说:“用二项式定理将不等式的左右两边展开,运用放缩法即可证明”
乙说:“通过转化,构造函数,利用函数的单调性即可证明”
参考上述解题思路,结合自己的知识,请你证明此不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线C上的点M(x,y)到定点F(1,0)的距离和它到定直线l:x=5的距离的比是常数
5
5

(Ⅰ)求曲线C的方程;
(Ⅱ)过F且斜率为1的直线与曲线C相交于A、B两点.求:
    ①线段AB的中点坐标;     
    ②△OAB的面积.

查看答案和解析>>

同步练习册答案