精英家教网 > 高中数学 > 题目详情
化简
1+cosθ+sinθ
1-cosθ+sinθ
+
1-cosθ+sinθ
1+cosθ+sinθ
分析:原式利用二倍角的余弦函数公式化简,提取公因式约分后,通分并利用同分母分式的加法法则计算,再利用同角三角函数间的基本关系及二倍角的正弦函数公式化简即可得到结果.
解答:解:原式=
2cos2θ+2sin
θ
2
cos
θ
2
2sin2
θ
2
+2sin
θ
2
cos
θ
2
+
2sin2θ+2sin
θ
2
cos
θ
2
2cos2
θ
2
+2sin
θ
2
cos
θ
2

=
2cos
θ
2
(cos
θ
2
+sin
θ
2
)
2sin
θ
2
(cos
θ
2
+sin
θ
2
)
+
2sin
θ
2
(cos
θ
2
+sin
θ
2
)
2cos
θ
2
(cos
θ
2
+sin
θ
2
)
=
cos
θ
2
sin
θ
2
+
sin
θ
2
cos
θ
2
=
sin2
θ
2
+cos2
θ
2
sin
θ
2
cos
θ
2
=
1
1
2
sinθ
=
2
sinθ
点评:此题考查了三角函数的化简求值,涉及的知识有:二倍角的正弦、余弦函数公式,同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知180°<α<360°,则化简
1-cosα
1+cosα
-
1+cosα
1-cosα
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

-3π<α<-
5
2
π
,则化简
1-cos(α-π)
2
的结果为(  )
A、sin
α
2
B、cos
α
2
C、-cos
α
2
D、-sin
α
2

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:(1)cos(15°-α)sin15°-sin(165°+α)cos(-15°);

(2)cos(60°-α)-sin(60°-α).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

化简
1+cosθ+sinθ
1-cosθ+sinθ
+
1-cosθ+sinθ
1+cosθ+sinθ

查看答案和解析>>

同步练习册答案